Code No.: R22CS58315OE

R22 H.T.No.

8 R | | |

## CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

## II-M.TECH-I-Semester End Examinations (Regular) - January- 2025 OPERATIONS RESEARCH (OE) (VLSI SD)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

|                      | carries 10 marks and may have a, b, c as sub questions.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                      | PART-A                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (10 Marks)                                                   |
| 1. a) b) c) d) e) f) | Why is sensitivity analysis important in decision-making?  Define inventory control.  Define infeasible solution.  Write one real-world application of dual simplex method.  How does nonlinear programming differ from linear programming?  List the major differences between PERT and CPM.  Name the algorithm used for solving a sequencing model problem.  Define the term "idle time" in scheduling.  How can dynamic programming solve network flow problems? | [1M]<br>[1M]<br>[1M]<br>[1M]<br>[1M]<br>[1M]<br>[1M]<br>[1M] |
| j)                   | Define "dominant strategy" in the context of game theory.                                                                                                                                                                                                                                                                                                                                                                                                            | [1M]                                                         |
|                      | PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (50 Marks)                                                   |
| 2.                   | What do you mean by sensitivity analysis? Discuss sensitivity analysis with respe (i) Change in the constraint matrix (ii) Addition of a new constraint.  OR                                                                                                                                                                                                                                                                                                         | ct to [10M]                                                  |
| 3.                   | The weekly demand of a certain product follows a normal distribution with a measure 500 units and a standard deviation of 100 units. The lead time is 2 weeks, and company desires a 95% service level. Determine: (i) The reorder point and (ii) safety stock.                                                                                                                                                                                                      | the [10M]                                                    |
| 4.                   | Solve the following problem by the graphical method. Maximize $Z=2X_1+2X_2$<br>Subject to $5X_1+2X_2\geq 10$<br>$X_1+X_2\leq 5$<br>$2X_1+5X_2\geq 10$<br>$0\leq X_1\leq 4$<br>$0\leq X_2\leq 4$                                                                                                                                                                                                                                                                      | [10 <b>M</b> ]                                               |
| 5.                   | Consider the following problem where the initial solution is infeasible. Use the simplex method to solve: Minimize $Z = X_1 + 2X_2$ subject to $2X_1 + X_2 \le 6$ $X_1 + X_2 \ge 5$ $X_1, X_2 \ge 0$                                                                                                                                                                                                                                                                 | dual<br>[10M]                                                |

Use the Kuhn-Tucker conditions to determine  $X_1$ ,  $X_2$  and  $X_3$  so as to maximize  $Z = -X_1^2 - X_2^2 - X_3^2 + 4X_1 + 6X_2$ 6.

$$X_1 + X_2 \leq 2$$

$$2X_1 + 3X_2 \le 12$$

and 
$$X_1, X_2 \ge 0$$

OR

7. A project has the following characteristics. Construct a PERT network. Find the critical path and variance for each event.

| Activit | Most       | Most        | Most likely |
|---------|------------|-------------|-------------|
| у       | optimistic | pessimistic | time        |
|         | time       | time        |             |
| 1-2     | 1          | 5           | 1.5         |
| 2-3     | 1          | 3           | 2           |
| 2-4     | 1          | 5           | 3           |
| 3-5     | 3          | 5           | 4           |
| 4-5     | 2          | 4           | 3           |
| 4-6     | 3          | 7           | 5           |
| 5-7     | 4          | 6           | 5           |
| 6-7     | 6          | 8           | 7           |
| 7-8     | 2          | 6           | 4           |
| 7-9     | 5          | 8           | 6           |
| 8-10    | 1          | 3           | 2           |
| 9-10    | 3          | 7           | 5           |

[10M]

[10M]

8. A company has to process five items on three machines A, B and C. Processing times are given in the following table:

| Item | Ai | $B_i$ | Ci |
|------|----|-------|----|
| 1    | 4  | 4     | 6  |
| 2    | 9  | 5     | 9  |
| 3    | 8  | 3     | 11 |
| 4    | 6  | 2     | 8  |
| 5    | 3  | 6     | 7  |

[10M]

Find the sequence that minimizes the total elapsed time.

9. Minimize 
$$Z = X_1X_2^2 X_3^{-1} + 2X_1^{-1} X_2^{-3} X_4 + 10X_1 X_3$$
  
Subjected to

Subjected to 
$$3X_1^{-1}X_3^{-2}X_4^{-2} + 4X_3X_4 \le 1$$

$$5 X_1 X_2 \le 1$$

Solve the geometric programming problem

10. Apply the dynamic programming to solve the following problem.

Minimize 
$$f(y) = x_1^2 + x_2^2 + x_3^2$$

$$x_1 + x_2 + x_3 \ge 12$$

$$x_1, x_2, x_3 \ge 0$$

[10M]

[10M]

11. Solve the game whose payoff matrix is given below

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | B <sub>4</sub> | B <sub>5</sub> | В6         |
|----------------|----------------|----------------|----------------|----------------|----------------|------------|
| $A_1$          | 1              | 3              | -I             | 4              | 2              | <b>-</b> 5 |
| A <sub>2</sub> | -3             | 5              | 6              | 1              | 2              | 0          |

[10M]

\*\*\*\*\*