1

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - December- 2024 NETWORK ANALYSIS AND SYNTHESIS

(ECE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

DADT

	<u>PARI-A</u>	(10 Marks)
1. a)	How many closed paths are available in a tree?	[1M]
b)	Define co efficient of coupling.	[1M]
c)	What is the time constant of a series RC circuit?	[1M]
d)	What do you mean by overdamped and under damped?	[1M]
e)	What is driving point function?	[1M]
f)	Define characteristic impedance.	[1M]
g)	List any two applications of band pass filter.	[1M]
h)	Draw the basic configuration of symmetrical lattice network.	[1M]
i)	What is Hurwitz polynomial?	[1M]
j)	Define positive real function.	[1M]

PART-B (50 Marks)

2. In the graph shown in Figure (1), the ideal voltage source e = 1V. For the remaining branches each has a resistance of 1Ω with O as the reference. Obtain the node voltage e1, e2 and e3 using network topology.

Fig 1.

3.a) Explain dot convention for coupled circuits.

[5M]

b) Explain incidence matrix, Tie-set matrix and cut-set matrix.

[5M]

4. Discuss the transient analysis of RLC series circuit excited by D.C. voltage.

[10M]

OR

5.a) A sinusoidal voltage $v(t) = 20 \sin(75t)$ is applied suddenly to a series RL circuit with $R = 20\Omega$ and L = 4 H. Find the time instant at which transient current becomes zero.

b) Define the quality factor. What is its significance?

[4M]

6. Find the Z- parameters for the following circuit.

[10M]

Fig 2 OR

- 7.a) Explain the concept of poles, zeros, their significance and necessary conditions for driving point functions and transfer functions?
 - b) Design Π attenuator with 50 Ω characteristic impedance and attenuation of 6 dB. [5M]
- 8. Design an m-derived LPF (T- and π -Section) having a design impedance of 500Ω and cut-off frequency 1500 Hz and an infinite attenuation frequency of 2000 Hz

9. Derive the equation of characteristic impedance and attenuation constant of a [10M] symmetrical T network.

- 10.a) What are the properties of LC driving point functions? [4M]
 b) Test the following polynomial are Hurwitz [6M]
 - i) $P(S) = S^3 + 4S^2 + 5S + 2$ ii) $P(S) = S^4 + S^3 + S^2 + 2S + 12$

11. The driving point impedance of a one-port reactive network is given by [10M]

$$Z(S) = \frac{5(S^2 + 4)(S^2 + 25)}{S(S^2 + 16)}$$

Obtain Foster I &II networks.
