Code No.: R22CS58311OE

[Time: 3 Hours]

R22

H.T.No.

8 R

[Max. Marks: 60]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-M.TECH-I-Semester End Examinations (Regular) - January- 2025 MACHINE LEARNING (OE)

(CSE)

Notas		ks. oul
Note: This question paper contains two parts A and B. Part A is compulsory which carries 10 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.		
	$\underline{PART-A} \tag{10}$	Marks)
1. a) b)	What is the difference between regression and classification? Calculate the mean squared error for predicted values $[2.5,0.0,2.1,7.8]$ and actual values $[3.0,-0.5,2.0,7.5]$.	[1M] [1M]
c)	What is the main goal of clustering in unsupervised learning?	[1M]
d) e)	Compute the distance between (2,3) and (5,7) using the Euclidean formula. What is the purpose of a confusion matrix in evaluating classification models?	[1M] [1M]
f)	Calculate the accuracy, precision, and recall for a classifier with a confusion matrix: TP=50, FP=10, FN=5, TN=35.	[1M]
g)	Define sparse representation and its importance in machine learning.	[1M]
h) i)	Compute the output of a ReLU activation for $[-1,2,-3,4]$ $[-1,2,-3,4]$ $[-1,2,-3,4]$. List three key features of the Scikit-learn library.	[1M] [1M]
j)	Standardize the dataset [10,20,30] using Scikit-learn.	[1M]
2.	Explain the decision boundary for a linear classifier with weights $w = [2, -1]$ and bias	Marks) [10M]
	b=-3.	[]
	OR	
3.		[10M]
3. 4.	OR	
	OR Illustrate the process of how the Nearest Neighbors algorithm makes predictions. Apply PCA to reduce a dataset with features [2,4], [1,3], [0,0] to one dimension.	[10M]
4.	OR Illustrate the process of how the Nearest Neighbors algorithm makes predictions. Apply PCA to reduce a dataset with features [2,4], [1,3], [0,0] to one dimension. OR Analyze the impact of initialization on the results of the K-means algorithm. Explain why Ensemble methods are less prone to overfitting.	[10M]
4. 5.	OR Illustrate the process of how the Nearest Neighbors algorithm makes predictions. Apply PCA to reduce a dataset with features [2,4], [1,3], [0,0] to one dimension. OR Analyze the impact of initialization on the results of the K-means algorithm.	[10M] [10M]
4.5.6.	OR Illustrate the process of how the Nearest Neighbors algorithm makes predictions. Apply PCA to reduce a dataset with features [2,4], [1,3], [0,0] to one dimension. OR Analyze the impact of initialization on the results of the K-means algorithm. Explain why Ensemble methods are less prone to overfitting. OR	[10M] [10M] [10M]
4.5.6.7.	Illustrate the process of how the Nearest Neighbors algorithm makes predictions. Apply PCA to reduce a dataset with features [2,4], [1,3], [0,0] to one dimension. OR Analyze the impact of initialization on the results of the K-means algorithm. Explain why Ensemble methods are less prone to overfitting. OR Perform a 3-fold cross-validation split for X= [1,2,3,4,5,6]. Train a simple RNN for a sequence prediction task and compute its output.	[10M] [10M] [10M] [10M]
4.5.6.7.8.	Illustrate the process of how the Nearest Neighbors algorithm makes predictions. Apply PCA to reduce a dataset with features [2,4], [1,3], [0,0] to one dimension. OR Analyze the impact of initialization on the results of the K-means algorithm. Explain why Ensemble methods are less prone to overfitting. OR Perform a 3-fold cross-validation split for X= [1,2,3,4,5,6]. Train a simple RNN for a sequence prediction task and compute its output. OR	[10M] [10M] [10M] [10M] [10M]