Code No.: AD701PC

R20

H.T.No.

8

R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Regular) - November- 2024 INTRODUCTION TO PREDICTIVE ANALYTICS (AI&DS)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Label the equation of the linear regression model.	[2M]
b)	State the problems associated with perceptron learning algorithm.	[2M]
c)	How to calculate Bias?	[2M]
d)	Show the general form of the in-sample estimates.	[2M]
e)	Differentiate gradient boosting and AdaBoost.	[2M]
f)	Mention the gradients for commonly used loss functions.	[2M]
g)	Why are weights required in neural network model?	[2M]
h)	Define support vector machine.	[2M]
i)	Provide the mechanism to choose number of clusters.	[2M]
j)	Summarize the features of principal components.	[2M]
	PART-B	(50 Marks)
2.	Examine the approaches for variable subset selection with linear regression. OR	[10M]
3.	Outline the strategy of multiple regression from Simple univariate regression.	[10M]
4.	Illustrate the cross-validation method for estimating the prediction error . OR	[10M]
5.	Analyze the role of bootstrap as a general tool for assessing statistical accuracy.	[10M]
6.	Inspect the methodology of numerical optimization via gradient boosting. OR	[10M]
7.	Describe a modular algorithm for fitting additive models and their generalization.	[10M]
8.	Interpret various issues in training the neural networks. OR	[10M]
9.	Choose a suitable case study and apply the technique of K-nearest-neight Classifiers.	nbor [10M]
10.	Demonstrate the functionality of the Apriori algorithm. OR	[10M]
11.	Assess the mechanisms at play with the additional randomization employed random forests.	l by [10M]
