' Code No.: CS504PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Supply) - December- 2024 FORMAL LANGUAGES AND AUTOMATA THEORY (Common for CSE, IT, CSC, CSM)

	ie: 3 Hours] [Max. Marle: This question paper contains two parts A and B.	ks: 70]
Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.		
	<u>PART-A</u> 20	Marks)
1. a) b) c) d) e) f) g) h) i)		[2M] [2M] [2M] [2M] [2M] [2M] [2M] [2M]
2.	Explain how finite automata are used to solve problems and how these problems are classified based on complexity. OR	Marks) [10M]
3.	Given the DFA with states $\{q0, q1, q2\}$, alphabet $\{a, b\}$, start state $q0$, accept state $q2$, and transition function $\delta(q0, a) = q1$, $\delta(q0, b) = q0$, $\delta(q1, a) = q1$, $\delta(q1, b) = q2$, $\delta(q2, a) = q1$, $\delta(q2, b) = q0$, determine whether the DFA accepts the string "abaa".	[10M]
4.	Minimize the following DFA and provide the minimized DFA: States: $\{A, B, C, D, E\}$ Alphabet: $\{0, 1\}$ Transition function: $\delta(A, 0) = B$ $\delta(A, 1) = C$ $\delta(B, 0) = A$ $\delta(B, 1) = D$ $\delta(C, 0) = D$ $\delta(C, 1) = A$ $\delta(D, 0) = C$ $\delta(D, 1) = E$ $\delta(E, 0) = E$ $\delta(E, 1) = E$ Start state: A Accept states: $\{A, D\}$	[10M]
5.	OR Explain algebraic laws for regular expressions with example.	[10M]

6. Explain why not all context-free languages can be accepted by a deterministic PDA. [10M]7. Explain what makes a PDA deterministic (DPDA). [10M] Discuss the limitations and advantages of DPDAs compared to non-deterministic PDAs. 8. Convert the following CFG into Chomsky Normal Form: [10M] $S \rightarrow AB|aS$, $A \rightarrow BC[b,$ $B \rightarrow b$ $C \rightarrow c$ OR 9. Explain how Turing machines extend the capabilities of finite automata and [10M] pushdown automata. Discuss the concept of Turing-completeness. 10. Explain the concept of a Turing machine. What is the halting problem, and why is it [10M] significant in the context of computation theory? OR 11. Explain why the word problem for groups is undecidable. Provide an example [10M] illustrating this problem. *****