Code No.: R22CS305PC

R22

H.T.No.

R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Regular) - December- 2024 DISCRETE MATHEMATICS

(Common for CSE, CSM)

[Tim	e: 3 Hours] [Max. Mar	ks: 60]
Note:	This question paper contains two parts A and B.	
	Part A is compulsory which carries 10 marks. Answer all questions in Part A.	
	Part B consists of 5 Units. Answer any one full question from each unit. Each quest	ion
	carries 10 marks and may have a, b, c as sub questions.	
	$\underline{PART-A} \tag{10}$	Marks)
1. a)	What is the difference between formal logic and informal logic?	[1M]
b)		[1M]
c)		[1M]
d)		[1M]
e)		[1M]
f)		[1M]
g)	How many ways can n distinct objects be arranged?	[1 M]
h)		[1M]
i)		[1M]
j)	Why is the Four-Color Theorem significant in graph theory?	[1M]
	PART-B (50) Marks)
2.	Prove or disprove the validity of the following arguments using the rules of inference.	[10M]
·	(i) All men are giants (ii) All kings are men (iii) Therefore, all kings are giants.	
	OR	
3.a)	Test the Validity of the Following argument. If you work hard, you will pass the	: [5M]
	exam. You did not pass. Therefore you did not work hard.	
b)	With constructing the Truth Table prove that (p->q)->q⇔pvq?	[5M]
4.	Which elements of the poset /({2,4,5,10,12,20,25},/) are maximal and which are	[10M]
	minimal?	
	OR V V V V V V V V V V V V V V V V V V V	[10] [1
5.	Let $F(x)$ be the set of all one-to-one onto mappings from X onto X, where $X=\{1,2,3\}$.	. [10M]
	Find all the elements of F(x) and find the inverse of each element.	
6.	Let G be a group of positive real numbers under multiplication and G ' be a group of	f [10M]
	all real numbers under addition. The mapping $f: G \to G'$ given by $f(x) = \log_{10} x$.	•
	Show that f is an isomorphism.	
	OR	5-1-5
7.a)	The operation \circ is defined by a \circ b = a for all a, b \in S. Show that (S, \circ) is a semi group	. [5M]
b)		[5M]
	i. a ⁻¹ and b commute.	
	ii. b ⁻¹ and a commute.	
	iii. a ⁻¹ and b ⁻¹ commute.	
8.	State and prove The Principle of Inclusion-Exclusion.	[10M]
	OR	
9.	Find the number of integer solutions of the equation $x1+x2+x3+x4+x5 = 30$ under the	e [10M]

constraints $x1 \ge 0$ for i=1,2,3,4,5 and further x2 is even and x3 is odd.

10.a) Show that if the number of vertices of a connected graph a is n and the number of edges m and the region r, then r+n-m=2?

b) Show that the number of odd degree Vertices in a graph is always even?

OR

11. Explain about the following with examples.

i) Eulerian Graph.

ii) Chromatic number.
