R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

III-B.TECH-I-Semester End Examinations (Supply) - December 2024 DIGITAL SIGNAL PROCESSING

(ECE)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

	DADT A	(20.17.1)
	PART-A	(20 Marks)
1. a)	5	[2M]
b)		[2M]
c)		[2M]
d) e)	Explain the 2 Point DIT FFT. What is Warping effect?	[2M]
f)	What is Gibbs phenomenon?	[2M]
g)	Explain the Hamming window.	[2M]
h)	Compare between Butterworth with Chebychev filters.	[2M] [2M]
i)	Define the sampling rate conversion.	[2M]
j)	How to prevent overflow in design of digital filters?	[2M]
		[]
	PART-B	(50 Marks)
2.	Determine the impulse response of the system given by the difference equation.	[10M]
	$y(n) = -3y(n-1)+x(n) - 2x(n-1)-4y(n-2)$ for $n \ge 0$	
3.	Check for following systems is linear, causal, time in variant, stable, static.	[10M]
	i) $y(n) = x(3n) + x(n-2)$.	
	ii) $y(n) = cos(x(n))$.	
4.	Develop a radix -2 DIT FFT algorithm and draw the flow graph for computation N=	=8. [10M]
5.	Draw the flowgraph of the radix-2 DIFFFT algorithm for N=8.	[10M]
6.	A digital low pass filter is required to meet the following specification. Passband ripple:≤ 4.436 dB	[10M]
	Passband edge :0.35Π rad/sample	
	Stopband attenuation :≥20 dB	
	Stopband edge: 0.711 rad/sample	
	Sample rate:T=0.1sec	
	The filter is to be design by Butterworth procedure and performing a biling transformation on an analog system function.	ear
	OR	
7.	Convert the analog filter with system function $H(s)=(s+0.1)/((s+0.1)^2.49)$ into	ο Γ10M1

Convert the analog filter with system function $H(s)=(s+0.1)/((s+0.1)^2 +9)$ into a [10M] digital IIR filter by means of the impulse invariance method.

8.' Prove that an FIR filter has linear phase if the unit sample response satisfies the condition h(n) = ± h(M-1-n), n =0,1,.... M-1.

OR

9. Explain the principle and procedure for designing FIR filter using rectangular window and Compare FIR and IIR Filters

10. What are limit cycles? And also Explain the Decimation by a Factor D.

OR

11. Explain the interpolation by a Factor I.

[10M]