R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Regular) - December- 2024 DIGITAL LOGIC DESIGN

(ECE)

[Max. Marks: 60] [Time: 3 Hours]

Note: This question paper contains two parts A and B.

Code No.: R22EC303PC

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(10 Marks)
1. a) b) c) d) e) f) g) h) i)	Convert (378) ₁₀ to octal. Which gates are called universal gates? What are its advantages? Define Min term & Max term. Implement AND gate using NAND gates. Define combinational logic circuit. What is flip-flop? Draw a 3-bit asynchronous down counter. What is meant by state reduction? Write any one difference between Mealy and Moore model. What is meant by finite state machine?	[1M] [1M] [1M] [1M] [1M] [1M] [1M] [1M]
2.a) b)	PART-B Convert Octal to hexadecimal conversion (756.603) ₈ . Encode the data bits 1101 into the 7 bit even parity Hamming Code. OR	(50 Marks) [5M] [5M]
3.	State De Morgan Theorem and Apply compliment theorem to each of the follow expressions. (i) $(A + B + C)D$ (ii) $ABC + DEF$ (iii) $AB + CD + EF$ (iv) XYZ and $X + Y + CD$	[10M]
4.	Simplify the Boolean expression using K-MAP. $F(A,B,C,D,E) = \sum m(0,1,4,5,16,17,21,25,29)$ OR	[10M]
5.a) b)	Realization of OR gate using DTL. Realization of AND gate using RTL.	[5M] [5M]
6.	Implement the full adder function by using NAND gates. OR	[10M]
7.a) b)	Compare sequential and combinational circuits. Convert SR- flip-flop into JK-flip-flop.	[5M] [5M]
8.	Design and explain the operation of a 4-bit ring counter. OR	[10M]
9.	Design and construct MOD-5 synchronous counter using JK flip flop.	[10M]
10.a) b)	Explain about FSM in detail with an example. What are the capabilities and limitations of Finite state machines? OR	[5M] [5M]
11.a) b)	Name the elements of ASM chart and define each of them. Explain in detail the ASM technique of designing a sequential circuit. ***********************************	[5M] [5M]