-Code No.: R22EE104ES

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–I–Semester End Examinations (Regular) - January - 2025 BASIC ELECTRICAL ENGINEERING

(Common for ECE, IT, CSD, CSC, CSM)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Find the current flowing through each resistance using Kirchhoff's laws.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{\mathbf{PART-A}} \tag{10}$	Marks)
1. a)	Draw the V-I characteristic of an Ideal voltage source.	[1M]
b)	What is the time constant of the R-L series circuit?	[1M]
c)	Define reactive power.	[1M]
- d)	What is the current relationship between the line and phase values of a 3-phase	[1M]
	balanced delta connection?	
e)	What is the efficiency of a transformer?	[1M]
f)	What happens if d.c supply is connected to a transformer?	[1 M]
g)	What is the function of brushes in a d.c generator?	[1M]
h)	What are the losses of a d.c motor?	[1M]
i)	Define the slip of a 3-phase Induction Motor.	[1M]
j)	What is the speed of a synchronous generator?	[1M]
2 ->	· · · · · · · · · · · · · · · · · · ·	Marks)
2.a)	State and explain Kirchoff's laws.	[5M]

3.a) State and explain the superposition theorem.

[5M]

[5M]

Using Norton's theorem, find the current in a 10 Ω resistor in the circuit shown in the [5M] figure below.

4.a)	Define the average value and derive the expression for the same of a sinusoidal alternating quantity.	[6M]
b)		[4M]
	OR	
5.a)		[6M]
b)	Determine the power factor and the input power for a circuit with $v = 50 \sin(\omega t + 10^0)$ and $I = 2 \sin(\omega t + 40^0)$ A.	[4M]
6.a)	Derive an e.m.f equation of a 1-phase transformer.	[6M]
b)	The maximum flux density in the core of a 220/4400 V, 50Hz single-phase transformer is 1.25Wb/m ² . If the emf per turn is 6V, determine (i) primary and secondary turns and (ii) the area of the core	[4M]
	OR	
7.a)	The state of a shight bligge it all storing.	[6M]
b)	The iron and full-load copper losses in a 100KVA single-phase transformer are 400 and 600W respectively. Calculate the efficiency at half-full load, 0.8 p.f. lag.	[4M]
8.	Explain the construction and working of a d.c generator with a neat sketch. OR	[10M]
9.a)	Derive an expression for the torque equation of a d.c motor.	[6M]
b)	Explain the significance of a back e.m.f in a d.c motor.	[4M]
10.a)	Draw the torque-slip characteristics of a 3-phase Induction motor.	(6) (1)
b)	Explain any one starter used in 3-phase Induction Motor.	[5M]
	OR	[5M]
11.	Explain the constructional details and working principle of 3-phase alternator.	[10M]