Code No.: R22EE204ES

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE:: HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - January- 2025 BASIC ELECTRICAL ENGINEERING

(Common for ECE, CSE, IT)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(10 Marks)
1. a)	State KVL.	[1 M]
b)	What are the various types of current sources?	[1M]
c)	Define R.M.S value of a sinusoidal quantity.	[IM]
d)	What is power factor?	[1M]
e)	Define turns ratio of a transformer.	
f)	What is Ideal transformer?	[1M]
g)	Why is yoke required in a DC machine?	[1M]
h)	What is the significance of back emf?	[1M]
i)	Give any one application of 3-phase Induction motor.	[1M]
j)	Define slip speed of 3-phase Induction motor.	[1M]
J	Define stip speed of 3-phase induction motor.	[1M]
	PART-B (50 I	Marks)
2. a)	State and explain Norton' theorem.	[5M]
b)	Give the V-I relationship for R, L and C elements.	[5M]
,	OR	[DIVI]
3.a)	State and explain Thevenin's theorem.	ESNAT
b)	Determine the current flowing in each resistance of the network shown in figure below.	[5M]
0)	betomine the entrolle flowing in each resistance of the network shown in figure below.	. [5M]
	80 20	

- 4.a) Obtain an expression for resonant frequency of a series R-L-C circuit excited by an alternating Voltage of variable frequency and constant voltage.
 - b) A series R-L circuit having a resistance of 4 Ω and 3 Ω inductive reactance is fed by 200 V, 1-φ supply. Find current drawn by the circuit.

OR

5.	Three coils each having resistance 3Ω and inductive reactance 4Ω are connected in star to a 440 V, 3-phase supply. Calculate (i) the line and phase voltages and (ii) the phase and line currents.	[10M]		
6. a)	Explain the working principle of single phase transformer.	[5M]		
b)	Draw the equivalent circuit of a transformer when referred to primary from the fundamentals.	[5M]		
OR				
7. a)	Explain different losses of a transformer.	[5M]		
b)	A 100-kVA, 3300/400-V, 50 Hz, 1-phase transformer has 110 turns on the secondary. Calculate the approximate values of primary and secondary full-load currents, the maximum value of flux in the core and the number of primary turns.	[5M]		
8. a) b)	Explain the working principle of a d.c generator. A 4-pole lap wound generator has 250 conductors on armature. It is driven by a prime mover at a constant speed of 800 rpm. If the flux per pole is 0.2 Wb, Calculate the generated emf?	[5M] [5M]		
OR				
9. a)	Derive an expression for torque developed by d.c motor.	[6M]		
b)	Draw the torque vs. speed characteristics of all d.c motors	[4M]		
10. a)	A 3-phase, 50 Hz, 6 pole 3-ph induction motor has full load slip of 3 %. Find (i) synchronous speed (ii) motor speed.	[6M] [4M]		
b)	Explain the torque-speed characteristics of 3-phase Induction motor?	[]		
OR				
11.	Explain the constructional details and working principle of synchronous generator.	[10M]		