Code No.: R22AP102BS

R22 H.T.No.

8 R

CMR ENGINEERING COLLEGE: HYDERABAD UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Regular) -January - 2025 APPLIED PHYSICS

(Common for ECE, CSD, CSM, CSC, IT)

[Time: 3 Hours] [Max. Marks: 60]
Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{PART-A} \tag{10}$	Marks)	
1. a) b) c)	Explain briefly the physical significance of wave function (Ψ). List any two drawbacks of free electron theory. Differentiate intrinsic and extrinsic semiconductors.	[1M] [1M] [1M]	
d) e)	Sketch V-I characteristics of Zener diode both in forward and reverse bias. Determine the relative permeability of a ferromagnetic material, if a field of strength 220 amp/metre produces a magnetization 3300 amp/metre in it.	[1M] . [1M]	
f) g)	Justify why solid fuel cells are considered essential energy materials. Evaluate the advantages of the sol-gel method in the synthesis of nanomaterials.	[1M] [1M] [1M]	
h) i) j)	Write a short note on ball milling method. Write the characteristics of laser. The refractive indices of core and cladding materials of a step index fibre are 1.48 and 1.45	[1M]	
37	respectively. Calculate numerical aperture, and acceptance angle of given optical fiber.		
٥.	PART-B Describe the Davisson and Germer experiment to demonstrate the wave nature of a particle	0 Marks) :. [8M]	
2.a) b)	Determine the wavelength associated with an electron subjected to a potential difference of 1500 volts.	f [2M]	
3.a)	Using energy band diagrams, classify solids into conductors, semiconductors, an insulators.		
b)	Explain the E-K (energy vs. wavevector) diagram and its role in understanding the electronic structure of solids.	e [4M]	
4.	Explain the working and I-V characteristic of a p-n junction diode with suitable diagrams.	[10M]	
OR			
5.a)	diode (LED).		
b)	The energy gap of a semiconductor is 1.1 eV. Calculate the wavelength of light that would be absorbed by this semiconductor material.	d [2M]	
6.a) b)	Differentiate between soft and hard magnetic materials.	[5M] [5M]	
7.	OR Discuss briefly the concepts of magnetostriction and magnetoresistance, elaborating on the applications in memory devices and magnetic field sensors.	ir [10M]	

8.	Discuss the working principles, instrumentation, and applications of Scanning Electron Microscope (SEM)	[10M]
9.a) b)	Explain the Chemical Vapor Deposition (CVD) techniques in terms of their working principles and applications in nanomaterial synthesis. Discuss the advantages and disadvantage of CVD.	[8M]
10.a)	·	[2M]
,	With the help of suitable diagrams, explain the construction and working of He-Ne laser. Mention any four applications of lasers.	[8M] [2M]
11.	Explain sten-index ontical Standard Characteristics	[2141]
	Explain step-index optical fiber and graded index optical fiber with suitable light ray diagrams.	[10M]
