Code No.: AP202BS

R20

H.T.No.

8 R

(20 Marks)

## CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

## I-B.TECH-II-Semester End Examinations (Supply) -January- 2025 APPLIED PHYSICS

(Common for CSM, ECE, MECH, AI&DS)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

PART-A

carries 10 marks and may have a, b, c as sub questions.

|       | PART-A                                                                                                             | (20 Mains)  |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------|
| 1. a) | What is de-Broglie Hypothesis?                                                                                     | [2M]        |
| b)    | What is band gap between valence band and conduction band in case of insulators?                                   | [2M]        |
| c)    | What is extrinsic semi conductor?                                                                                  | [2M]        |
| d)    | Write any two advantages of LED.                                                                                   | [2M]        |
| e)    | What is meant by dielectric polarization?                                                                          | [2M]        |
| f)    | What are the properties of ferro magnetic materials?                                                               | [2M]        |
| g)    | Write any two applications of LASERS in medical field.                                                             | [2M]        |
| h)    | What is Numerical aperture?                                                                                        | [2M]        |
| i)    | What is Nano technology?                                                                                           | [2M]        |
| j)    | What are the applications of SEM?                                                                                  | [2M]        |
|       | PART-B                                                                                                             | (50 Marks)  |
| 2     | Show that the energies of a particle in a potential box are quantized.                                             | [10M]       |
| 2.    | OR                                                                                                                 |             |
| 3.    | Discuss Kronig-Penney model of a crystal in a periodic potential field.                                            | [10M]       |
| 4.    | Explain Direct and indirect band gap semi conductors.                                                              | [10M]       |
|       | OR                                                                                                                 | 10 M        |
| 5.    | Discuss formation of PN junction diode and also explain I-V characteristics of junction diode.                     | PN [10M]    |
| 6.    | Derive an expression for internal field seen by an atom in an infinite array of at subjected to an external field. | oms [10M]   |
|       | OR                                                                                                                 | [10M]       |
| 7.    | What is Hysteresis? Explain Hysteresis nature in a ferro magnetic material.                                        | [TOIVI]     |
| 0     | Full in the construction and working of Ruby laser                                                                 | [10M]       |
| 8.    | Explain the construction and working of Ruby laser.  OR                                                            |             |
| 0     | Derive an expression for acceptance angle in an optical fiber.                                                     | [10M]       |
| 9.    | Derive an expression for acceptance angle in an option from                                                        |             |
| 10.   | Describe the process of synthesis of nano materials using chemical vapour depos<br>method.                         | ition [10M] |
|       | OR                                                                                                                 | 5103.63     |
| 11.   | Explain how X-ray diffraction (XRD) can be used to characterize the nano particle                                  | es. [10M]   |
|       |                                                                                                                    |             |