Code No.: R22AI203ES

1

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

I-B.TECH-II-Semester End Examinations (Supply) - February- 2024 DATA STRUCTURES THROUGH C++ (Common for CSC, CSD, CSM)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(10 Marks)
1. a) b) c) d) e) f) g) h)	Define Big 'Oh'notation. List the different ways to handle exceptions Differentiate stack and queue data structure. List the operations of queue. Define a heap tree. List the applications of trees. Classify the different sorting methods What is the difference between linear search and binary search? Differentiate cyclic and acyclic graph	[1M] [1M] [1M] [1M] [1M] [1M] [1M] [1M]
j)	What is AVL Tree?	[1M]
2.	PART-B What is inheritance? Explain the different types of inheritance. OR	(50 Marks) [10M]
3.	Write a C++ Program to Illustrate Friend Function.	[10M]
4.a) b)	Write a C++ program to perform insertion on a single linked list. Write a C++ program to perform deletion on a single linked list. OR	[5M] [5M]
5.a) b)	Write a C++ program to check whether the stack is full or empty. Describe about queue ADT in detail.	[5M] [5M]
6.	Explain the operations of threaded binary tree. OR	[10M]
7.	Explain preorder, inorder and postorder traversal of a binary tree.	[10M]
8.	Discuss quick sort algorithm and explain with suitable example. OR	[10M]
9.	Explain binary search technique with suitable example.	[10M]
10.	What is undirected graph? How DFS to be performed on undirected graph. OR	[10M]
11.	Define binary search tree. Construct a binary search tree for the following element 10,20,30,40,28,15,60,	ents [10M]