R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) -February- 2024 LAPLACE TRANSFORMS, NUMERICAL METHODS & COMPLEX VARIABLES (ECE)

[Time: 3 Hours]	[Max. Marks: 70]
Note: This question paper contains two parts A and B. Part A is compulsory which carries 20 marks. A Part B consists of 5 Units. Answer any one fu carries 10 marks and may have a, b, c as sub que	nswer all questions in Part A. Il question from each unit. Each question
PART-A	(20 Marks)

1. a)	Find the Laplace transform of cos ² 2t.	[2M]
b)	Solve $L\left\{\frac{\sin t}{t}\right\}$.	[2M]
c) d) e) f)	Write the newton's backward interpolation formulae. Write Lagrange's interpolation formulae. Write the formula for fourth-order runge-kutta method. Given $\frac{dy}{dx} = -xy^2$, $y(0)=2$. Compute $y(0.2)$ in steps of 0.1 using Euler's method.	[2M] [2M] [2M] [2M]
g) h) i)	State Cauchy-Riemann equations. Define analytic function. Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$.	[2M] [2M] [2M]
j)	State Cauchy's Residue theorem.	[2M]

	PART-B	(50 Marks)
2.	Find $L^{-1} \left[\log \left(\frac{s+3}{s+4} \right) \right]$.	[10M]

3. Using Convolution theorem
$$L^{-1}\left\{\frac{S}{(s^2+a^2)^2}\right\}$$
. [10M]

- 4. Find a real the real root of the equation $x^3 6x + 4 = 0$ by Newton Raphson [10M] method.
- 5. Using Newton Forward interpolation formula, compute the value of $\sqrt{5.5}$, given that $\sqrt{5}$ =2.236, $\sqrt{6}$ =2.449, $\sqrt{7}$ =2.646 and $\sqrt{8}$ =2.828. Correct up to three decimal places.
- 6. Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by Trapezoidal, Simpson's $\frac{1}{3}$ Rule and Simpson's $\frac{3}{8}$ Rule. [10M]
- 7. Using Runge Kutta method of fourth order Solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, y(0)=1. compute y(0.2) and y(0.4).

8. Verify whether the function $f(x) = \frac{x - iy}{x + iy}$ is analytic or not. [10M]

OR

9. Show that both real and imaginary parts of an analytic function are harmonic. [10M]

10. Evaluate $\oint \frac{e^{2z}}{(z+1)^4} dz$ around C:|z-1|=3 using Cauchy's integral formula. [10M]