Code No.: AI405PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) - February- 2024 DESIGN ANALYSIS OF ALGORITHMS (CSM)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{\mathbf{PART-A}} \tag{20}$	Marks)
1. a)	Explain about Big-oh notation.	[2M]
b)	How can we measure an algorithm's running time?	[2M]
c)	Define static Space Tree.	[2M]
d)	Give brief note on Graph Coloring.	[2M]
e)	What you mean by Dynamic Programming?	[2M] [2M]
f)	Explain about Optimal Binary Search Tree (OBST).	[2M]
g)	What is Greedy method?	[2M]
h)	Explain about Minimum Cost Spanning Trees. Define Branch and Bound technique.	[2M]
i) j)	Explain about non-deterministic algorithms.	[2M]
J)	•	
	ATTACK D	Marks)
2.a)	What is Space Complexity? Explain with suitable examples.	[5M]
b)	Write and explain recursive algorithm of Binary Search method.	[5M]
• `	OR What is stable Sorting Method? Is Merge sorting a stable sorting method? Justify your	[5M]
3.a)		[5111]
b)	answer. Explain Quick Sort algorithm and trace this algorithm for $n = 8$ elements:	[5M]
b)	24,12,35,23,45,34,20,48.	
	24,12,33,23,13,51,20,101	
4.	How to implement Disjoint sets? Explain with examples.	[10M]
	OR	F10 M 7
5.	Give the solution to the 8-Queens problem using Backtracking method.	[10M]
	With the help of suitable example explain the All Pairs Shortest Path problem.	[10M]
6.	OR	[101.1]
7.	Use the function OBST to compute $w(i, j)$, $r(i, j)$, and $c(i, j)$, $0 \le i < j \le 4$, for the identifier	[10M]
7.	set (a1, a2, a3, a4) = (do, if, int, while) with $p(1:4) = (3, 3, 1, 1)$ and $q(0:4) = (2, 3, 1, 1, 1)$.	
	Using the r(i, j)'s construct the Optimal Binary Search Tree.	
		5.03.53
8.	State the Job – Sequencing with deadlines problem. Find an optimal sequence to the $n = 5$	[10M]
	Jobs where profits $(P1, P2, P3, P4, P5) = (20, 15, 10, 5, 1)$ and deadlines	
	(d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3).	
0	OR Explain about Single Source Shortest Path problem in Greedy method.	[10M]
9.	Explain about Single Source Shortest Faul problem in Greedy method.	[]
10.	Describe LC Branch and Bound solution of 0/1 Knapsack problem in detail with an	[10M]
10.	example.	
	OR	F103.63
11.	State and prove the Cook's theorem.	[10M]
