Code No.: R22AP202BS

R22

H.T.No.

8 R

[5M]

[5M]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - February- 2024 APPLIED PHYSICS

(Common for ECE, CSE, IT)

		(Common for ECE, CSE, 11)	
	[Tim	e: 3 Hours] [Max. Marks: 60	1
I	Note:	This question paper contains two parts A and B.	-
-		Part A is compulsory which carries 10 marks. Answer all questions in Part A.	
			2.52
		Part B consists of 5 Units. Answer any one full question from each unit. Each question	on
		carries 10 marks and may have a, b, c as sub questions.	
		$\underline{\mathbf{PART-A}} \tag{10}$	Marks)
			- Lander
	1. a)	What is photoelectric effect?	[1M]
	b)	State Heisenberg uncertainty principle.	[1M]
	c)	What are direct band gap semiconductors?	[1M]
	d)	Mention the applications of LED.	[1M]
	e)	Define ferroelectricity.	[1M]
	f)	What are solid electrolytes?	[1M]
	g)	What is nano scale?	[1M]
	h)	How TEM can be used to characterize nano particles?	[1M]
	i)	What is a lasing action?	[1M]
	j)	What is total internal reflection?	[1M]
	3)	What is total internal refrection:	[IIVI]
		PART-B (50 M	larks)
	2.a)	Derive Planck's radiation law.	[5M]
	b)	Explain Davisson and Germer experiment with a neat schematic diagram to prove the	[5M]
	0)	wave nature of matter.	[JIVI]
		OR	
	3.a)	What is Fermi-Dirac distribution? Explain the effect of temperature on the	[5]M]
	J.a)	distribution.	[5M]
	b)	Describe classification of solids on the basis of band theory.	[5]/[]
	U)	Describe classification of solids of the basis of balld theory.	[5M]
	4.a)	Distinguish between intrinsic and extrinsic semiconductors.	[5M]
	b)	Discuss working principle of p-n junction diode at various bias conditions.	NO Secure 12 Section
	0)		[5M]
	F =)	OR	F.63. 63
	5.a)	Distinguish between PIN diode and Avalanche photo diode.	[5M]
	b)	Explain the structure, working principle and characteristics of solar cell.	[5M]
	6.a)	Write a short note on liquid crystal displays.	[5]M]
	b)	What are soft and hard magnetic materials? Explain in detail.	[5M]
	U)		[5M]
	7 - \	OR	563.63
	7.a)	What do you mean by magnetostriction? Explain its working principle.	[5M]
	b)	Give an account on rechargeable ion batteries.	[5M]
	8.a)	Illustrate Quantum confinement.	[5](1)
	b)	Discuss the fabrication of nano materials using chemical vapor deposition (CVD)	[5M]
	U)	method.	[5M]
		OR	

9.a) Describe how surface to volume ratio changes from bulk to nano.

b) Explain with a neat diagram SEM setup and its use in analyzing nanostructures.

10.a)	Explain the characteristics of laser. Derive the relations between Einstein coefficients of a laser.	[5M]
b)	With the help of suitable diagrams, explain the principle, construction and working of	[5M]
	He-Ne laser.	
	OR	
11.a)	Derive an expression for acceptance angle and Numerical aperture of an optical fiber.	[5M]
b)	Distinguish between step-index and graded-index fibers.	[5M]