Code No.: AP202BS

[Time: 3 Hours]

R20

H.T.No.

8 R

[Max. Marks: 70]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) -February- 2024 APPLIED PHYSICS

(Common for CSM, ECE, MECH, AI&DS)

[11111	e: 5 Hours	1113. 70]
Note:	This question paper contains two parts A and B.	
Part A is compulsory which carries 20 marks. Answer all questions in Part A.		
Part B consists of 5 Units. Answer any one full question from each unit. Each question		
carries 10 marks and may have a, b, c as sub questions.		
	carries to marks and may have a, b, c as sub questions.	
	PART-A (2	20 Marks)
	TART-A	o marks)
1. a)	Mention any two properties of matter waves.	[2M]
b)	What are the draw backs of classical free electron theory?	[2M]
c)	What is Intrinsic semiconductor?	[2M]
d)	Write any two applications of solar cells.	[2M]
e)	Define dielectric constant.	[2M]
f)	What is Bohr magneton.	[2M]
g)	Abbreviate LASER and Write two applications of laser.	[2M]
h)	Draw the diagram of an optical fiber.	[2M]
i)	What is meant by Nanoscale.	[2M]
j)	Mention any two applications of nanotechnology.	[2M]
3)	Mention any two approactions of nanoceomology.	[]
PART-B (50 Marks)		
2.	Derive the expression for Schrodinger's time independent wave equation and write the	
2.	physical significance of wave function used in the above equation.	
	OR	
3.	Discuss origin of energy bands formation in solids and explain the classification	of [10M]
5.	crystalline solids.	or [romi]
	crystainne sonus.	
4.	What is Hall effect? Derive an expression for Hall voltage and mention is	its [10M]
4.		to [Tolli]
	applications. OR	
5		[10M]
5.	Explain the construction, working and applications of LED.	[TOWI]
6	What is internal field? Darive the expression for Clausius Mossetti equation	[10M]
6.	What is internal field? Derive the expression for Clausius - Mossotti equation.	[TOWI]
7	OR	[10M]
7.	Explain the classification of magnetic materials qualitatively.	[TOIVI]
0	D' d' contra l'ord' a contra North and	[10M]
8.	Discuss the construction and working of He-Ne laser.	[10M]
0	OR	[10] ([
9.	Explain the classification of optical fibers based on refractive index profile.	[10M]
1.0	Date of the Color	-1 [10M]
10.	Explain quantum confinement. Describe the synthesis of nanomaterial by Sol-g	gel [10M]
	method.	
	OR	[10] [2]
11.	Explain the principle of TEM and explain its advantages.	[10M]