Code No.: IT301ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Supply) - February- 2024 ANALOG & DIGITAL ELECTRONICS (Common to IT, CSM & AI&DS)

[Time: 3 Hours] [Max. Marks: 70] Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	Discuss about diode switching times.	[2M]
b)	What is regulation? Define its percentage of regulation.	[2M]
c)	Define current amplification factor.	[2M]
d)	Illustrate CE cutoff region and saturation region.	[2M]
e) f)	Compare BJT and FET. Define de Morgan laws.	[2M]
g)		[2M]
h)	What is an essential prime implicant?	[2M]
,	Define Magnitude Comparator.	[2M]
i)	Compare combinational and sequential circuits.	[2M]
j)	What is state diagram?	[2M]
	PART-B	(50 Marks)
2.	Explain the operation of P-N Junction Diode with its V-I Characteristics.	[10M]
	OR	
3.	Draw the circuit diagram and waveforms of Bridge full wave rectifier and explain working with necessary equations.	n its [10M]
4.	Explain CE configuration with the help of input and output characteristics. OR	[10M]
5.	How transistor acts as a switch. Explain with different switching times.	[10M]
6.	characteristics.	and [10M]
- \	OR	
7. a) b)	Realize XOR gate using universal gates. Explain the operation of TTL with neat diagram.	[5M] [5M]
8. a)	Minimise the following Boolean function using K-map. $F=\Sigma m (0,3,4,7,8,10,12,14)+d(2,6)$	[5M]
b)	Construct a 3*8 decoder using logic gates and its truth table.	[5M]
	OR	
9. a) b)	Design the 4-bit binary Adder-Subtractor with suitable diagram. Design a 4- input priority encoder	[5M] [5M]
10.	Draw and explain SR flip flop with truth table and find characteristic equation	[10M]
11	OR	F101 G
11.	Draw and explain the logic diagram of 4-bit ring counter with the help of timing diagrams.	[10M]
