Code No.: ME404PC

R20 H

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Regular) - August- 2023 FLUID MECHANICS AND HYDRAULIC MACHINES (MECH)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	$\underline{PART-A} \tag{20}$	Marks)
1. a)	Name the phenomenon of capillarity.	[2M]
b)	Explain Newton's law of viscosity.	[2M]
c)	Name the different forces present in a fluid flow. For the Euler's equation of motion,	[2M]
	which forces are taken into consideration?	[]
d)	What is meant by surface and body forces?	[2M]
e)	Define boundary layer and boundary layer thickness.	[2M]
f)	Explain how laminar and turbulent boundary layers are formed.	[2M]
g)	What is hydrodynamic force?	[2M]
h)	How governing of speed is done on Pelton wheel?	[2M]
i)	Define Slip, and percentage slip of a reciprocating pump.	[2M]
j)	What is priming of a centrifugal pump? Why it is needed.	[2M]
	DADE D	
2.	$\frac{PART-B}{PART-B}$ (50)	Marks)
2.	Define viscosity. A plate having an area of 0.7 m ² is sliding down the inclined plane	[10M]
	at 45° to the horizontal with a velocity of 0.45 m/s. there is a cushion of fluid 2 mm	
	thick between the plane and the plate. Find the viscosity of the fluid if the weight of	
	the plate is 300N.	
3.	OR Distinguish between:	
		F23.47
a) b)	Absolute pressure and gauge pressure.	[3M]
c)	Piezometer and simple manometer.	[3M]
()	U-tube differential manometer and inverted U-tube differential manometer.	[4M]
4.a)	State the momentum equation. How will you apply momentum equation for	[5M]
	determining the force exerted by a floating liquid on a pipe bend?	. ,
b)	Derive Bernoulli's equation through Euler's equation of motion.	[5M]
	OR	. ,
5.a)	Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream tube.	[5M]
b)	A 40 cm diameter pipe, conveying water, branches into two pipes of diameter 30 cm	[]
	and 20 cm respectively. If the average velocity in the 40 cm diameter pipe is 3 m/s.	
	Find the discharge in this pipe. Also, determine the velocity in 20 cm pipe if the	[5M]
	average velocity in 30 cm diameter pipe is 2m/sec.	[]
6.	Explain in detail laminar boundary layer, turbulent boundary layer, laminar sub-layer.	[10M]
	OR	_
7.a)	At a sudden enlargement of a water main from 240 mm to 480 mm diameter, the	[5M]
	hydraulic gradient rises by 10 mm. estimate rate of flow.	
b)	Derive an expression for minor losses due to sudden contraction.	[5M]

8.a)	Define the terms 'unit power', 'unit speed' and 'unit discharge' with reference to a	[5M]
	hydraulic turbine. Also derive expressions for these terms.	[5111]
b)		
	head is 5.6 m. If the speed ratio = 2.09, flow ratio = 0.68, overall efficiency = 86%	
	and the diameter of the boss is 1/3 the diameter of the runner. Find the diameter of the	
	runner, its speed and the specific speed of the turbine.	[5M]
	OR	
9.a)	What is specific speed? State its significance in the study of hydraulic machines.	[5M]
b)	By means of a neat sketch, explain the governing mechanism of Francis Turbine.	[5M]
	o de la como.	[3141]
10.a)	Draw and discuss the characteristic curves of centrifugal pump.	[5M]
b)	Enumerate the losses which occur when a centrifugal pump operates.	[5M]
	OR	[JIVI]
11.	The cylinder bore diameter of a single acting reciprocating pump is 150 mm and its	[10M]
	stroke length is 300 mm. The pump runs at 50 rpm and lifts water through a height of	[TOIVI]
	25 m. The delivery pipe is 22 m long and 100 mm in diameter. Find the theoretical	
	discharge. If the actual discharge is 4.2 liters/s, find the % Slip	
