R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

III-B.TECH-II-Semester End Examinations (Regular) - May- 2023 FINITE ELEMENT METHODS (MECH)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (20 M)	arks)	
1 \	What is the general procedure of the finite element method?	[2M]	
1. a)	What is a one-dimensional problem in the context of the finite element method?	[2M]	
b)	What is a one-difficult in the content of the three what is a truss and mention some common applications of trusses in mechanical engineering?	[2M]	
c)	What is the difference between a two-noded and a three-noded beam element?	[2M]	
d)	What is the difference between a two-noded and a time-noded seam element analysis?	[2M]	
e) f)	What is a constant strain triangle and how is it used in finite element analysis? What is the purpose of finite element modeling in axisymmetric solids subjected to	[2M]	
	Axi-symmetric loading?	[2M]	
g)	How is one-dimensional analysis used to model heat transfer in a fin?	[2M]	
h)	How do the geometric properties of a heat transfer structure affect the temperature	[2111]	
	distribution?	[2M]	
i)	How are the Eigenvalues and Eigenvectors calculated for a stepped bar in dynamic analysis?	-	
j)	What is the difference between hexahedral and tetrahedral elements in 3D stress analysis?	[2M]	
	PART-B (50 M)	(50 Marks)	
2.	For a stepped bar loaded as shown in figure. Determine a) Nodal displacements b) support	[10M]	
	Reactions.		
	$A = 15 \text{ cm}^2$ $10 \text{ kN} \text{ s} \rightarrow 20 \text{ cm}^2$		

OR

3.a) Can you describe the general procedure of the Finite Element Method and how it is applied in [6M] [4M] engineering applications? b) How has the development of Finite Element Methods impacted the field of engineering

- Consider a three-bar truss as shown in fig. it is given that E= 20x10⁵ N/mm². Calculate the [10M] 4. following:
 - i. Nodal displacements.
 - ii. Stress in each member

Area of element (1) = 2000mm^2

Area of element (2) $=2500 \text{mm}^2$

Area of element $(3) = 2500 \text{mm}^2$

OR

For the beam and loading shown in fig, calculate the slopes at B and C. 5.,

[10M]

Evaluate the element stiffness matrix for the triangular element shown in fig, under plane [10M] 6. stress conditions, Assume the following values; E=2X10⁵ N/mm²; v=0.3; t=10mm.

The nodal co-ordinates for an axisymmetric triangular element are given below. 7.

[10M]

 $r_1 = 10 \text{mm}; z_1 = 10 \text{mm}$

 $r_2=30$ mm; $z_2=10$ mm

 $r_3=30$ mm; $z_3=40$ mm

Evaluate [B] matrix for that element.

Determine the nodal temperatures in a composite wall shown in fig. the wall is maintained at 8. 100°C at the left face and convection mode of heat transfer occurs between the right face and the existing fluid. Thermal conductions are K₁=0.06W/cm⁰C, K₂=0.2 W/Cm⁰C, Convection co-efficient of heat transfer between walls and fluid h=0.1 W/cm² 0 C and fluid is at \varnothing_{f} =25 0 C. Consider unit area A=1cm² perpendicular to the direction of heat flow.

Find the temperature distribution in a square region with uniform energy generation as shown [10M] 9. in fig. Assume that there is no temperature variation in z-direction. Take k=30W/cm°c, length = 10cm, $T_{\infty} = 50$ °C, q = 100W/cm³

- [5M] State the properties of Eigen Values 10.a) [5M]
 - Determine the eigen values and the associated Eigen vectors of the matrix [A] given by b)

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

- What are the convergence requirements for a finite element analysis? 11.a)
 - [5M] How do you choose between hexahedral and tetrahedral elements for a finite element [5M] analysis?
