R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - May- 2023 COMPILER DESIGN

(Common for CSE, IT, CSC, CSD)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(20 Marks)
1. a)	What is an Interpreter?	[2M]
b)	Define cross compiler.	[2M]
c)	What is ambiguous grammar?	[2M]
d)	List the properties of LR parser.	[2M]
e)	What are the various methods of implementing three address statements?	[2M]
f)	What are the various types of intermediate code representation?	[2M]
g)	List the characteristics of peephole optimization.	[2M]
h)	What is a DAG? Mention its applications.	[2M]
i)	List the different storage allocation strategies.	[2M]
j)	Identify the constructs for optimization in basic block?	[2M]
	PART-B	(50 Marks)
2.	Generalize the important terminologies used in programming language ba	
	OR	
3.	Solve the given expression $a:=b+c*4$ with different phases of the compiler	r. [10M]
4.	Construct Predictive Parsing table for the following grammar.	[10] A]
٦.	E -> E+T T	[10M]
	$T \rightarrow T^*F \mid F$	
	F -> (E) id	
	and parse the string is id+id*id.	
	OR	
5.	Write algorithm for non recursive predictive parsing.	[10M]
		[]
6.	Explain about syntax directed translation schemes?	[10M]
	OR	-
7.a)	Write a short note on L-attributed grammars.	[5M]
b)	It is required to compute the total number of reductions performed to parse	
	given input. Using synthesized attributes only write the semantic rules to f	ind
	E. red, the number of reductions performed while reducing on input to E.	
	E-> E * T T	
	$T \rightarrow F - T \mid F$	
	F->2 4 Also draw annotated tree for 4-2-4*2.	
	Also diaw allibrated free for 4-2-4-2.	

	and an designing code generator.	[10M]
8.	Explain any four issues that crop up when designing code generator. OR	510147
	What is an activation record? Explain how it is related with runtime storage	[10M]
9.	organization?	
		[10M]
10.	Explain global data flow analysis with necessary equations.	54.03.63
11.	Explain with example the various techniques in loop optimization.	[10M]
