Code No.: EE204ES

R20

H.T.No.

R

CMR ENGINEERING COLLEGE: HYDERABAD

UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - March- 2023 BASIC ELECTRICAL ENGINEERING

(Common for CSM, ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

carries 10 marks and may have a, b, c as sub questions.

PART-A

(20 Marks)

1. a)	State and explain Ohm's law?	[2M]
b)	Draw the V-I characteristics of ideal and practical voltage sources	[2M]
c)	Define peak factor and form factor.	[2M]
d)		[2M]
e)		[2M]
f)	Explain the operation of Auto Transformer.	[2M]
g)	State Fleming's left hand rule.	[2M]
h)	List out the applications of DC Shunt Motor.	[2M]
i)	A 6-pole, 3-phase induction motor is connected to 50 Hz supply. If it is running at 960	[2M]

rpm, find the slip.

Draw Torque-Slip characteristics of 3-phase induction motor.

[2M]

PART-B (50 Marks)

2. State and explain superposition theorem with example & write their limitations.

[10M]

OR

3. Find the current flowing through 20 Ω resistor in the following circuit using Nodal [10M] analysis.

4. Calculate the form factor for the saw-tooth waveform shown in below figure. [10M]

OR

5. Derive the expression for RMS value and Average value of alternating current $I=I_m$ sinwt.

[10M]

6.	Determine the expression for EMF equation of single phase transformer.	[10M]
	OR	[TOTAL]
7.	Draw and explain the different types of phasor diagrams of Transformer on loaded condition.	[10M]
8.	Derive the expression for EMF generated in a DC Generator.	[10M]
_	OR	
9.	Describe the principle of operation of the DC Generator. What is back emf in DC motors and explain its effect.	[10M]
10.	A 3-Φ Induction motor is wound for 6 poles and is supplied from 50 Hz system. Calculate (i) the synchronous speed (ii) the speed of the motor when slip is 3% and (iii) the rotor current frequency when the motor runs at 800rpm.	[10M]
	OR	
11.	Explain working of three phase induction motor.	[10M]
	*******	[10141]