Code No.: EE104ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Supply) - March- 2023 BASIC ELECTRICAL ENGINEERING (Common for CSC, CSD, CSE, IT)

[Time: 3 Hours] [Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A	(20 Marks)
1. a) State Kirchhoff's current law.	[2M]
b) Draw the equivalent circuit of Thevenin's theorem.	[2M]
c) Define impedance of an a.c circuit.	[2M]
d) Give the expression for resonant frequency of series R-L-C circuit.	[2M]
e) Define the voltage regulation of a transformer.	[2M]
f) What are the applications of auto transformer?	[2M]
g) What are the losses in a d.c generator?	[2M]
h) Draw the characteristics of a d.c shunt motor.	[2M]
i) What is rotating magnetic field?	[2M]
j) What is synchronous speed?	[2M]
PART-B	(50 Marks)
2. a) State and explain Norton's theorem.	[5M]
 b) Derive an expression for transient current in R-L series circuit suddenly exd.c source. 	cited by [5M]
OR	
3. a) Obtain the V-I relationship for passive elements.	[5M]
b) In the given figure below, find the current flowing through R ₁ using superpo	osition's [5M]
theorem.	

4.	Derive the r.m.s value, average value and form factor o	f a sinusoidal quantity.	[10M]
	OR		

- 5. Obtain the line to phase relation of voltage and current quantities in 3-phase balanced [10M] star connection.
- 6. a) Draw the equivalent circuit of a single phase transformer.
 b) Explain various 3-phase transformer connections.
 [5M]

7. State and explain various losses of a transformer. How to reduce them. [10M]

8.	Explain the principle of operation and the constructional details of a D.C. Generator	[10M]	
0.	with a neat sketch. OR	[10M]	
9.	Derive an expression for torque of a D.C motor.	[TOIVI]	
10	Explain the constructional details and working principle of a 3-phase Induction motor.	[10M]	
10.	OR	[5M]	
11.a)	A 3- phase induction motor is wound for 6 poles and is supplied from 50 Hz system. Calculate (i) the synchronous speed (ii) the rotor speed when slip is 3% and (iii) rotor	[5M]	
	frequency when rotor runs at /50 rpm.		
b)	Give the constructional details of a synchronous generator.		