Code No.: AP202BS

[Time: 3 Hours]

R20

H.T.No.

8 R | | |

[Max. Marks: 70]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) - September- 2023 APPLIED PHYSICS

(Common for CSM, ECE, MECH, AI&DS)

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (2	20 Marks)
1. a)	Explain the physical significance of wave function?	[2M]
b)	What are the draw backs of classical free electron theory.	[2M]
c)	What is an intrinsic semiconductor?	[2M]
d)	Draw the I-V characteristics of a solar cell.	[2M]
e)	What is Ferro-electricity? Give any two examples.	[2M]
f)	Write the properties of Ferri magnetic materials.	[2M]
g)	What is population inversion? How it is achieved.	[2M]
h)	Explain graded-index optical fiber.	[2M]
i)	How TEM can be used to characterize nano particles?	[2M]
j)	List the various applications of nano materials.	[2M]
	PART-B (5)	0 Marks)
2.	What is de-Broglie hypothesis? Explain Davisson and Germer's experiment in support of this hypothesis.	[10M]
3.	OR Discuss with suitable mathematical expressions, the motion of an electron in a periodic potential.	[10M]
4.	What is a Fermi level? Explain the variation of Fermi level with temperature in case of extrinsic semiconductors.	[10M]
5.	OR Explain how a p-n junction is formed? Discuss the I-V characteristics curve of a p-n junction diode.	[10M]
6.	Explain the various polarization mechanisms in dielectric materials. OR	[10M]
7.	Define magnetic moment? Explain the classification of magnetic materials on basis of magnetic moment.	[10M]
8.	With the help of suitable diagrams, explain the principle, construction and working of a Ruby laser.	[10M]
9.	OR Describe the principle of an optical fiber and derive an expression for acceptance angle and numerical aperture of an optical fiber.	[10M]
10.	Write a short note on i) Surface to volume ratio and ii) Quantum confinement. OR	[10M]
11.	Explain the principle, construction and working of Scanning Electron Microscope (SEM).	[10M]