Code No.: R22AP202BS

[Time: 3 Hours]

R22

H.T.No.

8 R

[Max. Marks: 60]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Regular) - September- 2023 APPLIED PHYSICS

(Common for ECE, CSE, IT)

- "

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A	(10 Marks)
1. a) b) c) d) e) f) g) h) i)	What is black body? Define Symmetry in solids. What are the majority and minority charge carriers in the P-type semiconductors. List out applications of BJT. Define Magnetic Susceptibility. Distinguish between dielectric and Insulators. What is nanoscale. Write any two methods for Bottom-up approach. Abbreviate LASER. Explain the phenomenon of total internal reflection.	[1M] [1M] [1M] [1M] [1M] [1M] [1M] [1M]
2.	PART-B Explain the application of Schrodinger time independent wave equation in the case a particle in a 1-dimensional (1-D) box and show that the energies of the particles quantized.	
3.	OR Describe the behavior of electron under periodic potential using Kronig- Permodel.	nny [10M]
4.	Explain the construction and working mechanism of PIN diode. OR	[10M]
5.	Define Hall effect and derive the expression for Hall coefficient.	[10M]
6.	What do you mean by hysteresis in Ferro magnetic materials and explain hysteresis curve on the basis of domain theory.	the [10M]
7.a) b)		[7M] [3M]
8.	Describe the method of Physical vapor deposition (PVD) in Nanomater preparation.	ials [10M]
9.	OR Describe the synthesis of Nanomaterials using sol-gel method.	[10M]
10.	Describe the construction and working principle of Ruby laser with neat diagram. OR	[10M]
11.	Derive an expression for acceptance angle and numerical aperture of an optical fibe	er. [10M]