Code No.: CS8102PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-I-Semester End Examinations (Regular) - April - 2022 ADVANCED DATA STRUCTURES USING PYTHON (PC- II) (CSE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (20 Marks	;)
1. a)	What is the difference between big-oh notation and little-oh notation?	[2M]
b)	Define collision in hashing.	[2M]
c)	What is the necessity to moving towards skip list?	[2M]
d)	Define node Structure of skip list.	[2M]
e)	Define double rotation in AVL Trees.	[2M]
f)	Explain the advantages of B-trees.	[2M]
g)	List the properties of standard tries.	[2M]
h)	Differentiate compressed tries and suffix tries.	[2M]
i)	List advantages of Priority Range Trees.	[2M]
j)	Define Quad trees?	[2M]
	PART-B	50 Marks)
2.	Explain linked list collision resolution techniques.	[10M]
	OR	
3.	Given input (371, 323, 173, 199, 344, 679, 989) and has function $h(x) = x \mod 10$, show th result using: (i) Separate chaining. (ii) Closed hashing using linear probing, quadratic probing and double hashing $h2(x) = 7 - (x \mod 7)$.	e [10M]
	가입니다 그 집에 가게 휴가 해가입니다. 가입니다 아니다 그는 그리고 그리고 있는데 그리고 있다.	CLONG
4.	Explain various operations that can be performed on skip list.	[10M]
-	OR	[10M]
5.	Explain the necessity of randomizing data structures and algorithms.	
6.	Discuss about height balanced trees and their operations with an example. OR	[10M]
7.	a) Describe the B-trees? Explain the advantages of B-trees.	[5M]
	b) Prove that let T be a Red Black Tree with n interval nodes then no node has depth greater than 2 log(n+1).	[5M]
8.	a) Explain the construction of the KMP flow chart with an example.	[5M]
	b) Explain the search engines.	[5M]
	OR	
9.	Write an algorithm for Brute Force pattern matching and analyze its time complexity with suitable example?	[10M]
10.	Explain the one dimensional Range search with an example? OR	[10M]
11.	Write the various computational geometry methods for efficiently solving the new evolving problem?	[10M]
