Code No.: EC303PC

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

II-B.TECH-I-Semester End Examinations (Regular) - January- 2022 SIGNALS AND SYSTEMS

(ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B. Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (20 Ma	(20 Marks)	
1. a)	Find whether the following signal is periodic. If it so determine its fundamental period.	[2M]	
	$x(t) = \cos t + \sin \sqrt{2}t$		
b)	$cos(100\pi t)$, $cos(300\pi t)$ signals were orthogonal over one	[2M]	
c)	fundamental period 0 to 1/50.		
d)	Give the list of Dirichlet's conditions for the existence of Fourier series. Evaluate the following integrals.	[2M]	
۵)		[2M]	
	(i) $\int_{-1}^{\infty} (3t^2 + 1) \delta(t) dt$ (ii) $\int_{-1}^{\infty} (t^2 + \cos(\pi t)) \delta(t - 1) dt$		
e)	Define Signal and System bandwidth.	f01 G	
f)	Give the Paley-Wiener criterion for physical realization of LTI systems.	[2M]	
g)	$\begin{cases} a^n & 0 \le n \le N \\ 1 = 0 \end{cases}$	[2M]	
	Find the Z-Transform $x(n) = \begin{cases} a^n & 0 \le n \le N-1, \ a > 0 \\ 0, & Otherwise \end{cases}$	[2M]	
1.	(0, Otherwise		
h)	State the properties of Region of convergence with respect to z-transform.	[2M]	
i)	Explain allasing effect and how it can be avoided?	[2M]	
j)	With the necessary equations give the relation between convolution and correlation.	[2M]	

PART-B (50 Marks) 2. Find whether the following signals are energy or power or neither. [10M]

(i) $x(t) = e^{-at} u(t)$; a < 0

(ii) $x(t) = A\cos(1000 \pi t)$

OR

3. Compute the mean square error in signal approximation using orthogonal functions. [10M] Suggest how to minimize the mean square error.

Obtain the trigonometric Fourier series coefficients of the following periodic signal. [10M]

5. Evaluate the Fourier transform of the following signals.

[10M]

(i)
$$x(t) = \frac{1}{t}$$

(ii)
$$x(t) = \pi \delta(t - t_0) + \pi \delta(t + t_0)$$

- 6. State and prove frequency shifting and frequency convolution property of the [10M] Fourier Transforms.
- 7. What is an LTI system? Explain its properties. Derive an expression for the transfer OR [10M] function of an LTI system. Obtain conditions for the distortion less transmission through a system.
- [10M] 8. Find the Laplace transform of the following signals and sketch its ROC.

(i)
$$x_1(t) = e^{-4t} u(t) + e^{-5t} u(t)$$

(ii)
$$x_2(t) = -e^{4t} u(-t) - e^{5t} u(-t)$$

- [10M] 9. Find the inverse Z-Transform of the following. $X(z) = \frac{z}{2z^2 - 3z + 1}$ Using partial fraction method.
- [10M] 10. State and prove sampling theorem for low pass signals?

11. Compute the convolution and correlation of the following two signals x(t) = u(t) - u(t-3) h(t) = u(t) - u(t-2)

10M]