Code No.: EC305ES

R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply)- June- 2022 PROBABILITY THEORY AND STOCHASTIC PROCESSES (ECE)

		Hours] [Max. Mar	ks: 70]
Not	2.	Answer any <u>FIVE</u> questions. Each question carries 14 marks. All questions carry equal marks. Illustrate your answers with NEAT sketches wherever necessary.	
	٥.		X14=70
1.	a) b)	State and prove Bayes theorem of probability. Find the probability of the card being either red or a king when one card is drawn from a regular deck of 52 cards.	[7M] [7M]
2.	a)	Define conditional distribution and density function of two random variables X and Y.	[7M]
	b)	State and prove any three properties of the moment generating function.	[7M]
3.	a)	Define the autocorrelation function of a random process. Write properties of autocorrelation function of a WSS process and prove any three of them. $X(t)=ACos(wt)$ is a random process, where 'A' is uniform random variable over $(0, \pi)$. Test $X(t)$ for stationary.	[7M]
	b)		[7M]
4.	a)	Derive the relationship between the cross-power spectrum and the cross-correlation function.	[7M]
	b)	Estimate the average power in the random process $X(t) = A\cos(\omega_0 t + \theta)$ where A, ω_0 are real constants and θ is a random variable uniformly distributed in the range $(0, 2\pi)$.	[7M]
5.	a)	Show that a narrow band noise process can be expressed as in-phase and quadrature components of it.	[7M]
	b)	Explain different types of noise sources.	[7M]
6.	a) b)	State and prove Addition law of Probability. A fair coin is tossed 3 times. Let X be a random variable that denotes the number of heads appearing in each outcome. Find and plot the CDF of X.	[7M] [7M]
7.	a) b)	Obtain the moment generating function of a uniformly distributed random variable. Obtain the variance of the Rayleigh random variable.	[7M] [7M]
		Let $X(t)$ be a random process with mean 3 and auto correlation $9+4.\exp(-0.2 \tau)$. Find the mean, variance, and covariance of the random variables $X(5)$ and $X(8)$.	[7M]
	b)	Check random process $X(t)=ACos(wt+\beta)$, where β is a uniform random variable over $(0, 2\pi)$ for mean ergodicity.	[7M]