Code No.: MA101BS

R20 | H

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Supply) - January- 2022 LINEAR ALGEBRA AND CALCULUS (Common to CSC, CSD, CSE, CSM, ECE, IT, MECH)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART-A (20 Marks)	
1. a)		[2M] [2M]
b)	Find the value of k such that the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	
	$\begin{bmatrix} 1 & 2 & -3 \end{bmatrix}$	[2M]
c)	Find the eigenvalues of matrix $B = 5A^2 - 6A + 2I$, where $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$.	
		[2M]
d)	1 10 vc that the digentral des of 12	[2M]
e) f)	Define Conditional convergence and Absolute convergence. Test for convergence of $\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^2}$.	[2M]
g)	Write the geometrical interpretation of the Rolle's theorem.	[2M] [2M]
h)	Evaluate $\int_{0}^{\infty} x^{7} (1-x)^{5} dx$	[2M]
i)	If $x = r \cos \theta$, $y = r \sin \theta$ then find the value of $\frac{\partial r}{\partial x}$ and $\frac{\partial \theta}{\partial y}$.	[Zivi]
j)	$\frac{\partial}{\partial u} = \frac{\partial}{\partial v} \int dv $	[2M]
	0(7,0)	

2. a). Reduce the matrix $A = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$ to Echelon form and find its rank . [5M]

- b). Discuss for what values of λ , μ the simultaneous equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (i) unique solution (ii) infinite number of solutions (iii) no solution. [5M]
- 3. Solve the following system of linear equations by Gauss- Seidel iterative method correct to three decimal places $20x + y 2z = 17, \ 2x 3y + 20z = 25, \ 3x + 20y z = -18$
- 4. State Cayley- Hamilton and verify theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$. Also find A^{-1} .
- Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 2yz 2zx 2xy$ to the Canonical form by orthogonal reduction and hence state nature, rank, index, and signature of the quadratic form.
- 6. a) Test for convergence of the series $\sum \left(\sqrt{n^3 + 1} \sqrt{n^3}\right)$
 - b) Test for the convergence of the series $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$ [5M]
- 7. Test the convergence of the series $1 + \frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots \infty (x > 0)$. [10M]
- 8. a). Prove that $\frac{\pi}{3} \frac{1}{5\sqrt{3}} > \cos^{-1}\left(\frac{3}{5}\right) > \frac{\pi}{3} \frac{1}{8}$ using Lagrange's mean value theorem. [5M]
 - b). Obtain the Taylor's series expansion of $\sin x$ in powers of $x \frac{\pi}{4}$. [5M]

OR

- 9. a). Prove that $\beta(m,n) = \frac{\Gamma m.\Gamma n}{\Gamma(m+n)}$ where m > 0, n > 0.
 - b). Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(0 < b < a)$ about the major axis.
- a). Show that the functions u = xy + yz + zx, $v = x^2 + y^2 + z^2$, and w = x + y + z are [5M] functionally related. Find the relation between them.
 - b). If $u = \sin^{-1} \left(\frac{x + y}{\sqrt{x} + \sqrt{y}} \right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} tanu$. [5M]
- 11. Find the maximum volume of the rectangular parallelepiped that can be inscribed in the ellipsoid [10M] $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{z^2} = 1.$