R20

H.T.No.

8 R

CMR ENGINEERING COLLEGE: HYDERABAD UGC AUTONOMOUS

II-B. TECH-I-Semester End Examinations (Supply) - June- 2022

DISCRETE MATHEMATICS (Common to CSE, IT & CSM)			
[Time: 3 Hours] [Max. Marks: 70] Note: 1. Answer any <u>FIVE</u> questions. Each question carries 14 marks. 2. All questions carry equal marks. 3. Illustrate your answers with NEAT sketches wherever necessary.			
			5X14=70
1.	a)	Express the statement $p \rightarrow q$ as a statement in English. Let p be the statement "Maria learns discrete mathematics." and q the statement "Maria will find a good job."	[7M]
	b)	Show that $\neg (p \lor q)$ and $(\neg p \land \neg q)$ is logically equivalent.	[7M]
2.	a) b)	What is the Cartesian product of $A = \{I, 2\}$ and $B = \{a, b, c\}$? Find $A^{[n]}$, if $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ for all positive integers n.	[7M] [7M]
3.	a)	Prove that mathematical induction to show that formula for the sum of a finite number of terms of a geometric progression: $\sum_{j=1}^{n} ar^{j} = a + ar + ar^{2} + + ar^{n} = \frac{ar^{n+1} - a}{r-1}$ when $r \neq 1$, Where n is a nonnegative integer.	[7M]
	b)	Find the Fibonacci numbers f_2 , f_3 , f_4 , f_5 and f_6 .	[7M]
4.	a)	An urn contains four blue balls and five red balls. What is the probability that a ball chosen from the urn is blue?	[7M]
	b)	A young pair of rabbits (one of each sex) is placed on an island. A pair of rabbits does not breed until they are 2 months old. After they are 2 months old, each pair of rabbits produces another pair each month. Find a recurrence relation for the number of pairs of rabbits on the island after n months, assuming that no rabbits ever die.	[7M]
5.	a) b)	Prove that an undirected graph has an even number of vertices of odd degree. Show that a full m-ary tree with i internal vertices contains $n=mi+1$ vertices.	[7M] [7M]
6.	a)	Let $Q(x)$ be the statement " $x < 2$." What is the truth value of the quantification for all $x Q(x)$, where the domain consists of all real numbers?	[7M]
	b)	What are the truth values of the propositions $R(1, 2, 3)$ and $R(0, 0, 1)$?	[7M]

- 7. a) If J be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with J(a) = 4, J(b) = 2, J(c) = 1, [7M] and J(d) = 3. is J a bijection?
 - b) How can we produce the terms of a sequence if the first 10 terms are [7M] 5,11,17,23,29,35,41, 47, 53, 59?
- 8. a) Describe the time complexity of the linear search algorithm. [7M]
 - b) How many additions of integers and multiplications of integers are used by [7M] Algorithm I to multiply two n x n matrices with integer entries?
