Code No.: EE104ES

R20

H.T.No.

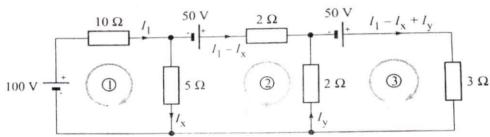
8 R

R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

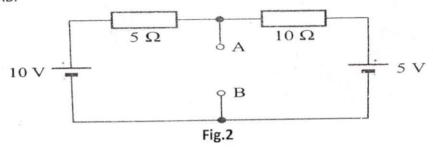
I-B.TECH-I-Semester End Examinations (Regular) - JULY- 2021

BASIC ELECTRICAL ENGINEERING (Common to CSE, IT, CSD and CSC)


[Time: 3 Hours]

[Max. Marks: 70]

- 1. Answer Any FIVE Questions. Each Question Carries 14 Marks
- 2. Illustrate your answers with NEAT sketches wherever necessary.


5 x 14M=70M

1 a) Using KVL, determine the currents I_x and I_y in the network shown in Fig.1.

- b) State and explain superposition theorem with an example.
- 2 a) Derive the expressions for average and RMS values of an alternating voltage wave v= V_mSinωt.
 - b) Derive the relation between phase and line quantities of voltage and current in a balanced three phase star connected load.
- a) A 50 kVA, 1000/10000 V, 50Hz single phase transformer has iron loss of 1200W. The copper loss with 5 A in the high voltage winding is 500 W. Calculate the efficiency at i) 50%, ii) 75 % iii) 100 % of full load at 0.6 power factor.
 - b) Discuss the various three phase transformer groups and their significance.
- 4 a) Explain the principle of production of rotating magnetic field in a 3-phase induction Motor
 - b) Describe the construction of a DC machine and represent each part in it.
- 5 a) State and explain Kirchhoff Laws
 - b) Two resistors of 4Ω and 2 Ω are connected in parallel to 10V DC source determine the current supplied by source and current in each resistor

- 6 a) A series RC circuit is excited with a DC voltage. Derive the expression for i(t) when the switch is closed at t=0.
 - b) Obtain Norton's equivalent circuit with respect to the terminals AB for the circuit shown in Fig.2. Determine the current through a load resistor of 5Ω , if it were connected across terminals AB.

- 7 a) Draw and explain the torque-slip characteristics of a three phase induction motor.
 - b) Derive the expression for resonant frequency in a series RLC circuit. A series RLC circuit consists of R=2 ohm, L=2mH and C=0.6 μF . Determine the resonant frequency.
- 8 a) Compare two winding transformer and auto transformer.
 - b) Calculate total energy consumed per day by the use of following loads:
 - i) 6 number of 40 W lights operated 4 hours per day
 - ii) 1 HP motor is operated 3 hours per day
 - iii) 1 KW heater is operated 1 hour per day
 - iv) 1 computer is used for 8 hours per day with printer about 30 minutes
