8R	8R 8R 8R 8R 8R 8R 8R
Code N	To: 121AT
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERADAD	
	B.Tech I Year Examinations, July - 2021 MATHEMATICAL METHODS
8	Common to EEE, ECE, CSE, EIE, IT, ETM) Max. Marks: 75 Answer any five questions
	All questions carry equal marks
1.a)	Interpolate the value of y at $x = 2.5$ from the following data.
8 R	$\begin{array}{ c c c c c c c c c }\hline x: & 0 & 1 & 2 & 3 \\ \hline y: & 2 & 5 & 13 & 35 \\ \hline \end{array}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
· . · . · - 2	shifting operators respectively. [7+8]
2.	Fit a straight line of the form $y = a + bx$ and a quadratic curve of the form
8R	$y = a + bx + cx^{2}$ to the data given below. x: 1
3.	Solve the equations $10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 104$ by Gauss-
J.	Seidel iteration method. [15]
	and annual printing annual

Apply Runge-Kutta method of order 4, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1 at x = 0, 1, 0.2. [15]

5. Find the Fourier series expansion of $f(x) = \begin{cases} \pi + x, & -\pi < x \le 0 \\ 0, & 0 < x < \pi \end{cases}$, $f(x+2\pi) = f(x)$ and hence show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

6.a) Solve x(y-z)p + y(z-x)q = z(x-y).

b) Find a partial differential equation by eliminating the arbitrary functions f and g from z = f(x) g(y).

7.a) If $\vec{F} = (x+y+1)\hat{i} - \hat{j} - (x+y)\hat{k}$, show that $\vec{F} \cdot Curl \vec{F} = 0$. b) Show that $\nabla^2 (r^n) = n(n+1)r^{n-2}$. [7+8]

8. Verify Gauss's divergence theorem for $\vec{F} = x^2 \hat{i} + z \hat{j} + yz \hat{k}$ taken over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.