Code No: 113AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December - 2019 THERMODYNAMICS

(Common to ME, AE)

Time:	3 Hours QDQDQDQMax. Mar	ks: 75
Notes	This question paper contains two parts A and B.	
Note:	Part A is compulsory which carries 25 marks. Answer all questions in Part A.	
	Part B consists of 5 Units. Answer any one full question from each	unit.
	Each question carries 10 marks and may have a, b, c as sub questions.	
2 0		Marks)
1.a)	Define system, control volume, surroundings, boundaries, universe.	[3]
b)	Explain heat pump with the help of a neat sketch. Derive its COP. Write the use of compressibility charts.	[2]
c) d)	Define DBT, WBT, DPT, RH and specific humidity.	[3]
e)	Draw p-v and T-s plots of Lenoir cycle and derive air standard efficiency.	[2]
f)	Clearly differentiate between microscopic and macroscopic view points.	[3]
(2) g)	Explain heat engine with the help of a neat sketch. Derive its efficiency.	[2]
(h)	Derive Clasius - Clapeyron equation from Maxwell's equations.	[3] \
· i)	Draw psychrometric chart and indicate all constant property lines on it.	[2]
j)	Draw p-v and T-s plots of Ericsson cycle and derive air standard efficiency.	[3]
	PART-B	
	(50 I)	Marks)
2. 3.	Derive steady flow energy equation. Show difference applications of it. OR Explain working of constant volume gas thermometer with help of a neat sketch.	$\begin{bmatrix} 10 \\ \vdots \\ [10] \end{bmatrix}$
4.	Prove equivalence of Kelvin- Planck and Clausius statement. OR	[10]
5.	Prove that internal energy is a point function.	[10]
6.a) b)	What are the deviations from perfect gas model. Discuss about Vanderwaal's equation of state. OR	[5+5]
7.a)	State law of corresponding states.	56.63
b)	Explain Generalised compressibility chart and observations made from it.	[5+5]
S D8.	Define mole fraction, mass fraction, volume fraction, equivalent gas constant. OR OR OR OR OR OR OR OR OR O	
9.a)	The molar analysis of a gaseous fuel indicates that it contains 40% CH ₄ , 20% 25% H ₂ and 15% N ₂ . Determine molar mass of the fuel and gravimetric analysis.	0 C2116,
b)	Write a note on Gibbs function.	[5+5]
10.	Draw p-v, T-s plots of Otto cycle and derive expressions for air standard eff	iciency,
	work done and mean effective pressure.	[10]
8 R ₁₁ .	Draw layout, p-v and T-s plots of Bell Coleman Cycle and derive expression for	COP.