	2.										
	1 ,		88	8R 8R 8R 8R 8R 8R							
				Code No: 134CF							
*1				JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD							
				B. Tech II Year II Semester Examinations, December - 2019							
	1			SWITCHING THEORY AND LOGIC DESIGN							
	ì		SR	Time: 3 Hours (Common to EEE, ECE, MCT, ETM) (Max. Marks: 75)							
				Note: This question paper contains two parts A and B.							
				Part A is compulsory which carries 25 marks. Answer all questions in Part A.							
				Part B consists of 5 Units. Answer any one full question from each unit.							
				Each question carries 10 marks and may have a, b as sub questions.							
	1	9	8R	8P 8P 8PART-A8P 8P 8P (25 Marks)							
				1.a) What is unit distance code? [2]							
				b) What are the basic operations in Boolean algebra? [3]							
	5			c) Why subtractor ICs not available? [2]							
	1			d) What is a priority encoder? [3]							
	ä		James Stranger	e) What are the basic types of shift registers?							
	1		$\rightarrow \leftarrow$	f) What are the various methods used for triggering flip-flops?							
				g) List the features of sequential circuits. \ [2] \ h) What is a Modulo-N counter? What are the applications of this counter? [3]							
				h) What is a Modulo-N counter? What are the applications of this counter? [3] i) Explain capabilities of finite state machine. [2]							
				j) Define Merger graph of n-state machine M. [3]							
	1			J) 24 ma 1.14 gas							
				PART – B							
	1		$Q \square$	$\bigcirc \bigcirc $							
			8R	2.a) Covert 105.1510 to binary, octal, hexadecimal.							
			8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. (50 Marks) b) What is hamming code? How is the hamming code word tested and corrected. [5+5]							
			8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. OR (50 Marks) What is hamming code? How is the hamming code word tested and corrected. [5+5]							
			8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. OR 3.a) Simplify the following Boolean expressions using the Boolean theorems.							
		-	8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C)							
			8 R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. OR 3.a) Simplify the following Boolean expressions using the Boolean theorems.							
	10 (A)	-	8R 8P	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B)							
		Table 1	8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method.							
		-	8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5]. 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5).							
			8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5]							
			8 R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=\(\sum m(7,9,10,11,12,13,14,15)\) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=\(\sum m(1,3,7,11,15) + \sum d(0,2,5). [5+5] OR							
			8R 8R	 2.a) Covert 105.15₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates: [5+5]. 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by 							
			8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates: [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151.							
			8R 8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151.							
			8R 8R 8R	2.a) Covert 105.15₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151. b) Realize the function f(A,B,C,D) = ∏(1,4,6,10,14) + d (0,8,11,15) using (i) 16:1 MUX [5+5]							
			8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151. b) Realize the function f(A,B,C,D) = ∏(1,4,6,10,14) + d (0,8,11,15) using (i) 16;1 MUX [5+5] 6.a) Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth tables.							
			8R 8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates: [5+5] 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151. b) Realize the function f(A,B,C,D) = ∏(1,4,6,10,14) + d (0,8,11,15) using (i) 16:1 MUX [5+5] 6.a) Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth tables. b) Deduce the design procedure for sequential logic circuits and give the classification of							
			8R 8R 8R	2.a) Covert 105.15₁0 to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates: [5+5]. 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151. b) Realize the function f(A,B,C,D) = ∏(1,4,6,10,14) + d (0,8,11,15) using (i) 16;1 MUX. [5+5] 6.a) Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth tables. b) Deduce the design procedure for sequential logic circuits and give the classification of sequential logic circuits.							
			8R 8R 8R	2.a) Covert 105.15 ₁₀ to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates. [5+5] 4.a) Simplify the expression Y=Σ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=Σ m(1,3,7,11,15) + Σ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151. b) Realize the function f(A,B,C,D) = Π(1,4,6,10,14) + d (0,8,11,15) using (i) 16:1 MUX [5+5] 6.a) Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth tables. b) Deduce the design procedure for sequential logic circuits and give the classification of sequential logic circuits. OR							
			8R 8R 8R	2.a) Covert 105.15₁0 to binary, octal, hexadecimal. b) What is hamming code? How is the hamming code word tested and corrected. [5+5] OR 3.a) Simplify the following Boolean expressions using the Boolean theorems. i) (A+B+C) (B'+C) + (A+D) (A'+C) ii) (A+B) (A+B') (A'+B) b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates: [5+5]. 4.a) Simplify the expression Y=∑ m(7,9,10,11,12,13,14,15) using the k-map method. b) Simplify the following Boolean function F(A,B,C,D)=∑ m(1,3,7,11,15) + ∑ d(0,2,5). [5+5] OR 5.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151. b) Realize the function f(A,B,C,D) = ∏(1,4,6,10,14) + d (0,8,11,15) using (i) 16;1 MUX. [5+5] 6.a) Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth tables. b) Deduce the design procedure for sequential logic circuits and give the classification of sequential logic circuits.							

	8R-	82	8R	8R	8R	8R	8R				
	8.8	Explain in o b) Draw a stat 01.	detail about serial e diagram for the	sequential macin	h neat logic diag ne whose output	ram. is 'l' when the s	equence is [6+4]				
	8R 9:	John James V	out the approaches	OR s of designing synctor and draw its	nchronous seque logic diagram.	ntial finite state r	machines.				
10.a) What are the Moore and Melay machines? Compare them. b) Explain the procedure for state minimization using the partition technique. OR [4+6]											
٥	8P	1.a) Reduce the	e following machi		$ \begin{array}{c c} \hline X = 1 \\ \hline C, 1 \\ A, 1 \\ \hline E, 0 \end{array} $	* S R	82				
	8R	b) Explain co	oncept of minimal	D B,1 A,0 cover table.	C,1 D,0	8R	\begin{align*				
	88	82	88	8 -000 00	- 8R	8	8				
	87	8.2	87	87		87	8R				
	8R	8	3 R	8R	8 R	82	87				
	18R	8R	8R	8	88	8R	88				