
					21	06.	
£.	K8	K8 , K8	3 7 8	K8.	K8 *	K8	
		No: 5221AV JAWAHARLAL NEHR	II TECHNOLOGIC	AL UNIVERSITY	R1		
		M. Tech I	I Semester Examinat	ions, August - 20			
	KS Time:	ho ne	NVECTIVE HEAT (Thermal Enginee	1 de l'execté	Max.Mar	ks:75	
	Note:	This question paper cont Part A is compulsory w consists of 5 Units. Ans 10 marks and may have	which carries 25 marks wer any one full quest	Answer all question from each unit			
	K8	To marks and may have	PART- A	*K8	Ķ8	K8	
					5 × 5 Mark	s = 25	
	1.a) b) c) d) e)	What is meant by critical Define thermal boundary Define the Bulk tempera What is Reynolds analog What is Darcy flow moo	y layer thickness. hture. gy?	K8	K8 -	[5] [5] [5] [5]	
	ж 2		n . nm . n				
			PART - B				
			PART - B		5 × 10 Mark	s = 50	
	2.a)	Sketch the boundary la significance of the boundary la Atmospheric air at 275 1.5 m long that is main heat transfer coefficient the average heat transfer total heat transfer rate 1 m. Assume transition	yer development of a dary layer. K and a free stream verained at a uniform tent over the region for coefficient over the from the plate to the occurs at Re = 2×10 ⁵ .	relocity of 20 m/s mperature of 325 k where the bounce e entire length	plate and explate flows over a flate. Calculate the arlary layer is late of the plate and	in the t plate verage minar, d the	***************************************
	1/0:	Atmospheric air at 275 1.5 m long that is main heat transfer coefficient the average heat transfer total heat transfer rate	yer development of a dary layer. K and a free stream vertained at a uniform tent over the region from the plate to the occurs at $Re = 2 \times 10^5$. OR	relocity of 20 m/s mperature of 325 k where the bound e entire length e air over the le	flows over a fla Calculate the address of the plate and	in the t plate verage minar, d the width [5+5]	
	1/0:	Atmospheric air at 275 1.5 m long that is main heat transfer coefficient the average heat transfer total heat transfer rate 1 m. Assume transition Derive the Navier-Stok A cylindrical body of 3 temperature of 36.5 °C. heat to be generated by to y = 15.06×10 ⁻⁶ m ² /s, k=	yer development of a dary layer K and a free stream v tained at a uniform tent over the region er coefficient over the from the plate to the occurs at Re = 2×10 ⁵ . OR Omm of diameter and the surrounding temposte body per hour if p 0.0892 kJ/m-h ⁰ C and	relocity of 20 m/s mperature of 325 k where the bounce entire length e air over the let the various the as $1.6m$ height is merature is 13.5° C. = 1.025 kg/m³, Cp β =1/298 K. Assur	flows over a flat. Calculate the adary layer is lated of the plate and another sumptions made an aintained at a confined out the amount of the plate and a confined out the amount of the	in the t plate verage minar, d the width [5+5] in ft [10] onstant bunt of Pr) ^{1/3} . [10]	
	⟨S _b)	Atmospheric air at 275 1.5 m long that is main heat transfer coefficienthe average heat transfer total heat transfer rate 1 m. Assume transition Derive the Navier-Stote A cylindrical body of 3 temperature of 36.5 °C. heat to be generated by the store of the significance of the boundary of th	yer development of a dary layer K and a free stream v tained at a uniform tent over the region er coefficient over the from the plate to the occurs at Re = 2×10 ⁵ . OR Omm of diameter and the surrounding temposte body per hour if p 0.0892 kJ/m-h ⁰ C and	relocity of 20 m/s mperature of 325 k where the bounce entire length e air over the let the various the as $1.6m$ height is merature is 13.5° C. = 1.025 kg/m³, Cp β =1/298 K. Assur	flows over a flat. Calculate the adary layer is lated of the plate and another sumptions made an aintained at a confined out the amount of the plate and a confined out the amount of the	in the t plate verage minar, d the width [5+5] in ft [10] onstant bunt of Pr) ^{1/3} . [10]	
	⟨S _b)	Atmospheric air at 275 1.5 m long that is main heat transfer coefficienthe average heat transfer total heat transfer rate 1 m. Assume transition Derive the Navier-Stoken A cylindrical body of 30 temperature of 36.5 °C. heat to be generated by total to be generated by total periods and the second periods are significantly as a constant of the second period periods are significantly as a constant of the second periods are significantly as a constant of the second periods are significantly as a constant of the second periods are significantly as a constant of the second periods are significantly as a constant of the second periods are significantly as a constant of the second periods are significantly as a constant of the second periods are significantly as a constant of the second periods are si	yer development of a dary layer K and a free stream v tained at a uniform tent over the region er coefficient over the from the plate to the occurs at Re = 2×10 ⁵ . OR Omm of diameter and the surrounding temposte body per hour if p 0.0892 kJ/m-h ⁰ C and	relocity of 20 m/s mperature of 325 k where the bounce entire length e air over the let the various the as $1.6m$ height is merature is 13.5° C. = 1.025 kg/m³, Cp β =1/298 K. Assur	flows over a flat. Calculate the adary layer is lated of the plate and another sumptions made an aintained at a confined out the amount of the plate and a confined out the amount of the	in the t plate verage minar, d the width [5+5] in ft. [10] onstant ount of Pr) 1/3 [10] d and	

