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Introduction
• What is Material Science?

– The understanding of how the structure and bonding of 
a material controls the properties

– The understanding of how the properties of a material 
can be controlled by processing

– Material selection for a wide range of applications

• What do Material Scientists do?
– They determine the structure of materials
– They measure the properties of materials
– They devise ways of processing materials
– They think about how a material is suited to the 

purpose it serves and how it could be enhanced to give 
better performance

w
w

w
.jntuw

orld.com

w
w

w
.jntuw

orld.com



Material Science or Condensed Matter

Condensed Matter Physics Material science

Understanding why materials are 
like they are.

Science of using them for a purpose?

Why is Fe magnetic? How do we produce a hard or soft 
magnet?

How does a transistor work? How do we dope Si to be 
uniformly p-type?

What makes polymers hard or 
soft?

How do we shape hard polymers?

How does a laser work? How can we improve the 
efficiency of a laser?

What is the electronic structure of 
Al?

When is Al best for drinks cans?

Why is Nb superconducting? Can we make and use a high 
temperature superconductor?
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New Materials- At research stage
• Nanostructured materials

– Grain size ~ nm
• Nanocomposites

– Features on scale of 10-9 m
– Properties dramatically different to microcomposites
– eg layers of silicate in a copolymer (Cornell)

• Light emitting polymers
– Thin, flexible displays
– Electronic news papers?

• Fullerenes and buckytubes (Nobel prize)
– Remarkable physical and electronic properties

• Ceramic superconductors (Nobel prize)
– Eg YBa2Cu3O7 (Tc = 90 K)
– HgBaCuO (Tc = 133K)
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New Materials - Early Commercialisation
Shape-memory alloys (NiTi alloys)

– Return to original shape on heating
– Medical applications
– Orthodontics

• Giant Magnetoresistance films
– Resistance drops dramatically with applied field
– Applications in hard drives

• Metal foams
– Light stiff structures
– Efficient energy adsorption

• Amorphous metals
– Transformer cores
– Skis, golf clubs, tennis rackets
– Razor blades

NPL

Al foam
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Amorphous Metals - Properties
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New Materials - Aerogels
• 99.8% air!
• Silica network with microporous structure (~10 nm)
• Prepared by removing liquid from wet gel
• Properties

– Extremely low density
– Exceptionally low thermal conductivity

• Applications
– Optical Oxygen sensors (photoluminescence directly proportional to 

amount of Oxygen in aerogel)
– Stardust technology – Capturing comet dust
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New materials since 1960- cheap watch

• Alumina (scratch free) glass face

• Special polymers

• Liquid crystal displays

• High purity quartz for oscillators

• Microelectronic hardware 
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Choosing materials
• Materials have (at least one) purpose

– Structural – it bears load or supports something
– Functional - it does something

• conducts electricity
• transmits light

– Decorative – it looks good

• Choosing the right material for a given purpose
– 10000 possible materials
– putting limits on mechanical , thermal, toxicity and other 

attributes (can it be shaped, joined, finished)–short list 10-50
– Model performance - short list 5-10
– Working prototypes - short list 1-2
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Material Properties
• Economic – can we afford to use material

– Price and availability
– Recyclabiliy

• Physical 
– Density
– Mechanical – is it strong/stiff enough
– Modulus
– Yield and tensile strength
– Hardness
– Fracture toughness
– Fatigue strength

• Thermal – how will it react to temperature fluctuations
– Thermal conductivity
– Thermal expansion
– Specific heat
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Material Properties
• Electrical and Magnetic – does it have the right functional properties

– Resistivity
– Dielectric constant
– Magnetic permeability

• Environmental interaction – how long will it last
– Oxidation
– Corrosion
– Wear

• Production – can we make it
– Ease of manufacture
– Joining
– Finishing

• Aesthetic – does it look/feel nice
– Colour
– Texture
– Feel
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Attribute maps
w

w
w

.jntuw
orld.com

w
w

w
.jntuw

orld.com



Types of Materials
• Metals

– Steel
– Light alloys (Al, Ti)

• Ceramics
– Pottery
– Glass
– Chalk 

• Polymers
– Plastic
– Nylon

• Composites
– Wood
– Glass fibre
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Structure of course
• Basic principles

– Crystal structure and bonding
– Defects
– Diffusion
– Thermal properties

• Mechanical properties of materials
– Elastic and plastic deformation
– Strength of materials
– Strengthening mechanisms

• Phase diagrams and alloys
• Non-metals

– Ceramics
– Polymers
– Composites

• Functional properties
– Electrical properties
– Magnetic properties

– Optical properties
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Crystal Structure and Bonding
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Crystal Structure and Bonding
• Why do we need to know the crystal structure

– It forms a link between the fundamental science and the real 
world

– Some physical properties (e.g. slip) depend on the crystal 
structure

– Crystal structures influence defect structures and associated 
properties

• Why do we need to know about bonding
– Elastic properties determined by interatomic bonding
– Interatomic bonding influences all material properties
– Classes of materials with same bond type have similar 

properties (metals, ionic crystals)
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Crystal Structures
• 7 classes according to the geometry of the unit cell 

(axial lengths a,b,c; axial angles α,β,γ)
– Cubic : a = b= c; α = β= γ=90 °
– Hexagonal; a=b ≠ c; α=β=90 °, γ=120°
– Tetragonal; a=b ≠ c; α=β=γ = 90°
– Rhombohedral; a=b = c; α=β= γ≠90°
– Orthorhombic; a≠b ≠ c; α=β=γ=90°
– Monoclinic; a ≠ b ≠ c; α=γ=90°≠β
– Triclinic; a ≠ b ≠ c; α≠β≠γ≠90°

b

c
α

γ
β

a
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Crystal Structures

Monoclinic

Tetragonal

Cubic

Triclinic

Hexagonal

Orthorhombic

Rhombohedral
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Metallic crystal structures
• Atomic bonding non-directional
• No restriction on number of nearest neighbours 

therefore dense atomic packing
• Three common structures; fcc, bcc, hcp
• Close packed crystal structures

– fcc (cubic)- Stacking sequence ABCABCA………
– hcp (hexagonal)- Stacking sequence ABABABA….

fcc bcc hcp

e.g Al, Cu, α Fe Cr, Mo, γ Fe Co, Zn, Ti

Coordination 
number

12 8 12

Atomic packing 
density

0.74 0.68 0.74
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Close-packed structures – FCC or HCP

A BC

fcc

C

ABC

A

B
A

B
A

AC
BA

B
BC

hcp
fcc hcp
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Non-crystalline structures 

•SiO2 Glass
•Continuous random 
network of Si atoms 
linked by O atoms

•3,4,5,6,7 membered 
rings

•Amorphous polymers
•Long chain molecules 
get entangled on cooling

•Crystallization inhibited

•Amorphous metals
•Alloys of metals with 
very different atom 
sizes

•Rapid quenching and 
size mismatch inhibits 
crystallization
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Polycrystalline Materials
– Single crystals have regular geometric shape indicative of 

crystal structure and flat faces (eg diamonds)

– Most materials made from small crystals with random 
orientations separated by grain boundaries
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Determination of Crystal Structure
• X-ray diffraction – x-rays scattered from 

regular arrays of atoms show peaks at certain 
angles according to Bragg’s Law
– nλ = 2 dhkl sin θ : n=1,2,3…….:
– dhkl is the interplanar spacing

d
θ

d sin θ
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Interatomic bonding

Equilibrium separation

Hard core repulsion

energy

r

Separation r

U = A / rm - B / rn

F = dU/dr = - Am/rm+1 + Bn/rn+1  

n<m

m~12

m depends on type of bond
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Interatomic bonding -Covalent
• Atoms shares electrons
• Strong and directional
• Low density
• Stiff and hard and brittle
• eg SiC

– Diamond structure
– Si bonded to 4 C
– C bonded to 4 Si
– Very hard
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Interatomic bonding -Ionic
• Electrons transferred between 

atoms. 
• n=1
• Strong non-directional
• Eg NaCl

– Rocksalt (cubic) structure
– Each Na+ surrounded by 6 Cl-

– Each Cl- surrounded by 6 Na+

• In general ionic bonds are 
partially covalent 
– % ionic = {1-exp[0.25(XA-XB)2}x100
– XA and XB are electronegativities of 

the 2 components A and B
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Interatomic bonding - Metallic
• A lattice of positive ions in a sea of delocalized

(mobile) electrons
• Non-directional 

– Favours close packed structures (fcc, hcp)

• Range of strength (0.7eV for Hg 8.8 eV for W)
• Transition metals have some directional bonding 

(favours non-close packed bcc)
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Interatomic bonding – Van der Waals
• Sometimes called secondary bonding
• Dipole-dipole interactions

– Permanent dipoles
– Induced dipoles (London dispersion) Eattr = -A/r6

• Weak (0.2 eV)
• Interaction between covalently bonded 

molecules
• Strength increases with molecule size 

– Significant in polymers
– Melting point increases with molecule size
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Defects
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Defects in crystals
• Why study defects?

– All material properties (physical, optical, electronic) are 
affected or even dominated by defects

– Defects often give materials their desired properties
• Colours of gem stones – impurities
• Doping in semi-conductors
• Dislocations in metals – plasticity

• Classes of defect
– Point defects
– Line defects
– Planar defects

w
w

w
.jntuw

orld.com

w
w

w
.jntuw

orld.com



Point defects
• Vacancies – missing atoms
• Self-interstitials – atoms occupy void in structure not normally 

occupied. 
• Impurities

– Substitutional – impurity atom replaces atom of host crystal 
– Interstitial – small impurities can occupy interstitial positions

Vacancy

Interstitial 
Impurity

Interstitial
Dumb bell 
Interstitial Substitutional

Impurity
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Concentration of Point defects
• Equilibrium number of vacancies increases with 

temperature

• Nc = N exp (-Qv/kT)

• For metals Nc/N ~ 10-4 just below melting point

• Defects may be introduced during processing – not 
necessarily in equilibrium

• Self interstitials are rare in close-packed (metal) 
structures
– Atoms are significantly larger than small void space
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Point Defects in Ionic Crystals
• In ionic crystal have extra constraint that total 

defect charge must be zero

– Frenkel defects 
• Anion vacancy + anion interstitial
• Cation vacancy + cation interstitial 

– Schottky defect
• Anion vacancy + Cation vacancy
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Impurities
• Addition of impurity atoms results in either

– A second phase
– A solid solution

• A solid solution forms when the impurities are homogenously 
dispersed throughout material

• The solubility depends on
– The atomic size – appreciable solubility if size difference < 15%
– Crystal structure – same crystal structure increases solubility
– Valences – a metal has a greater tendency to dissolve another 

metal of higher valence

• Cu / Ni soluble in one another in all proportions
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Dislocations

1-dimensional defects
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Line defects – edge dislocations
• Crystal contains an extra half plane of atoms 
• Burgers vector perpendicular to dislocation 

line
Edge 
dislocation

Burgers

circuit

Burgers 
vector
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Burgers vectors
• Perform atom to atom circuit around the dislocation 

line returning to starting point

• Choice of line direction is arbitrary but once line 
direction is chosen the circuit is done in a right hand 
sense

• Repeat atom to atom circuit in a perfect crystal 

• Circuit does not close

• b goes from finish to start of circuit

• Burgers vector is always a lattice vector of crystal
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Line defects – screw dislocations
• Atoms of one side of crystal displaced with respect to 

atoms on other side in part of crystal 
• Burgers (displacement) vector parallel to dislocation 

line
• Screw dislocations cause surface steps - growth

Burgers circuit

Burgers vector
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Screw dislocation

Line direction

Burgers vector 

Most dislocations are mixed – they have some edge 
component and some screw component
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Combining dislocations
• Dislocations never end within a crystal

– Burgers vector is constant along the whole length of 
the dislocation

– Character of dislocation may change (eg from edge to 
mixed to screw) as it changes direction

• When 2 dislocations combine the resulting 
dislocation has the sum of the Burgers 
vectors :    b3 = b1 + b2
– eg annihilation  b – b = 0
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Dislocation nodes

Dislocations can combine/split in a crystal

Total Burgers vector must be conserved

2
b2

1
3 b3

b1

b1 = b2  + b3
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Dislocation loops

Dislocation loops form when enclosed patch of 
material slips on slip plane

Dislocation character changes from edge type to 
screw type

Shear stress acting on the loop will either expand 
or contract it
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Dislocation motion
• The application of stress to crystals causes dislocations to move 

(plastic deformation)
• Dislocation climb requires vacancy diffusion
• Slip plane – easy direction for dislocation motion

– Close packed direction of crystal (eg (111) in fcc)

Slip plane
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Stresses and Strains around Dislocations
• Dislocations disrupt the crystal structure therefore 

they cost energy
• The energy comes from 2 sources

– The long range stress field that can be analysed using linear 
elasticity

– A core region in which strains (distortions) are too large to be
analysed using linear elasticity

• The long range elastic stress field controls how 
dislocations interact with
– Other dislocations
– Solute atoms
– Applied stresses

• The core structure is associated with dislocation 
dissociation and core spreading
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Stress / Strain field of a Screw Dislocation

r εθz = εθz = b/2πr

σθz = σθz = G b /2πr

Stress and strain fields are pure shear

Fields have radial symmetry

Stress and strain proportional to 1/r

Stress and strain tend to infinity as r-> 0
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Stress / Strain Field of Edge Dislocation

More complicated than screw dislocation

Not pure shear – hydrostatic component

-

+
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Energy of a dislocation

Elastic energy / unit volume= ½ σ ε

 = Gb2 / 8πr2

 Elastic energy of a shell = Gb2 / 4πr δr

 Total elastic energy = Gb2/4π ln(R/ro) per unit length

 ~ Gb2/2

 Typically 1-4 nJ m-1

Core energy – estimate as equivalent to one 
broken bond per atom spacing along core

Typically 0.1 – 1 nJ m-1
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Forces between dislocations
• Dislocations with same line vectors and same 

Burgers vectors repel each other

• Dislocations with same line vectors and 
opposite Burgers vectors attract each other

• Application of shear stress exerts a force on a 
dislocation
– F = τ b
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Origin and Multiplication of Dislocations
• Dislocations introduced during the 

growth process

• Typical dislocation densities 
– 106 cm-2 for well annealed crystals 
– 1011 cm-2 after plastic deformation

• Dislocations can be created from the 
collapse of vacancy loops

• Dislocations created at regions of 
local stress (eg inclusions)
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Sources of Dislocations
Frank-Read Sources

τb τb

Dislocation fixed 
at D1and D2 by
obstructions

D1 D2

τb

The application of 
a stress makes 
the dislocation 
bow outward
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Frank-Read Source
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Frank-Read Source
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Planar / Interfacial Defects
• Free surfaces

– Solid air interface

• Phase boundaries
– Separate regions of different chemical composition 

and/or atomic structure

• Grain boundaries
– Separate regions of different crystal orientation
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Grain Boundaries 
• Most material are polycrystalline

– Grain size depends on processing (rate of cooling from 
melt) 

– Grain boundary population never in equilibrium              

• The interfaces between the grains (grain 
boundaries)
– Dominate many material properties
– Contribute to the energy of a lattice

• The properties of grain boundaries depend on 
the misorientation angle between the grains
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Characterisation of Grain Boundaries
• Characterised by 3 parameters

– The normal to the interface
– The rotation axis (common crystallographic axis 

between 2 grains)
– The misorientation angle (θ)

• 2 types of boundary
– Tilt – rotation axis perpendicular to boundary plane 

normal
– Twist – rotation axis parallel to boundary normal
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Misorientation angle (θ) 
• Low angle grain boundaries – θ < 15°

– Small lattice mismatch concentrated along discrete 
lines in boundary

– Arrays of dislocations

• High angle grain boundaries – θ > 15°
– Crystal structure disordered in boundary plane

• Special grain boundaries
– For certain orientations there is good matching 

between the atoms in boundary plane
– Relatively low energy
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Low angle grain boundaries
• Widely spaced arrays of dislocations

• Perfect lattice between dislocations

• Angle (θ) : sin θ ∼ θ = |b|/d 

• Energy increases with angle

• Edge dislocations – tilt boundary

• 2-dimensional arrays of screw 
dislocations – twist boundary
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High angle Grain Boundaries
• When θ > 15  then the dislocations become so close 

together that the cores overlap
• Individual dislocations can no longer be identified
• Energy becomes independent of angle (with the 

exception of special orientations)
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Grain Boundary Energy

Energy of a low angle grain boundary = G θ/2

angle

energy

Twin boundary

special boundary
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Special grain boundaries
• Low energy boundaries when 2 lattices have a high 

density of coincident points

Coincidence
sites
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Twin Boundaries
• Twin boundaries separate 2 grains that are related by 

mirror symmetry (eg ABCABACBA in fcc lattice)

Fe-Cr-Ni
Ag
Cu

Crystal

83519
3778
62321

γgb mJ m-2γtwin mJ m-2
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Effects of grain boundaries
• Electrical properties

– Scatter electrons
– Acquire charge in ionic crystals

• Magnetic properties
– Inhibit domain wall motion

• Thermal properties
– Scatter phonons

• Physical properties
– Inhibit dislocation motion
– Increase creep
– Act as a sink/source for point defects 

w
w

w
.jntuw

orld.com

w
w

w
.jntuw

orld.com



Observing defects
• Optical microscopy – up to 2000 x 

magnification
– Reflecting mode for opaque samples
– Surface preparation (polishing and etching) shows up 

grains because of different surface texture
– Grooves form along grain boundaries

• Electron microscopy 
– TEM – beam passes through specimen (> 106 

magnification) – thin specimens
– SEM – Electron beam scanned across surface
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Diffusion

The natural tendency for atoms to be 
transported under a concentration 

gradient

Why study diffusion
– Heat treatment of materials 
– Doping in semi-conductors
– Creep 
– Solid state sensors, solid state batteries
– Diffusion bonding
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Definitions - Flux

Flux (J)
the mass (or number) of atoms passing through 
and perpendicular to a unit cross-section area of 
a material per unit time

J = M/At

J = 1/A dM/dt

Units

kg m-2 s-1

or atoms m-2 s-1
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Fick’s law (1st Law)

Steady state – Concentration does not change with time

Steady state diffusion

J= -D dC/dx

The flux (J) of diffusing particles is proportional to the 
gradient of concentration (C) 

The coefficient of proportionality D is called the 
diffusion coefficient (units m2 s-1)

w
w

w
.jntuw

orld.com

w
w

w
.jntuw

orld.com



Example of Fick’s 1st law 
• Oxidation of metals

– Diffusion of oxygen through scale of thickness xt

– Outer oxygen concentration constant Cs

– Inner oxygen concentration Ci

– Flux of oxygen through scale J = D (Cs-Ci)/xt

– However x increases at rate proportional to J
– dxt/dt = K  J  (K constant of proportionality)
– dxt/dt = DK (Cs-Ci)/xt ∫  xt dxt = DK (Cs-Ci) ∫ dt
– xt

2 = DK (Cs-Ci) t  : Parabolic oxidation

Ci Cs

Oxygenmetal

Oxide -thickness xt
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Fick’s Laws - 2nd Law

Non-steady diffusion 

Non-uniform concentration 
gradient

δC/δt = D  δ2C/δx2

Most practical diffusion situations are non-steady state
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Fick’s 2nd law - Derivation

Consider volume between 1 and 
2

Flux in is – D {δC/δx}1

Flux out is – D {δC/δx}2

= -D({δC/δx}1 + δx ({δ2C/δx2}

In the time interval δt the net 
change in concentration (δCδx) 
is (flux in – flux out)δt

Therefore 

δC/δt = D δ2C/δx2

1 2

Unit area

C

x
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Example of Fick’s 2nd law
• Rapidly changing concentration fluctuations 

are rapidly damped

– C(x,t) = a(t) sin(x/L)
– dC/dt = D d2C/dx2  = - D C/L2 

– Solving differential equation ∫ 1/C dC = - ∫ D/L2 dt
– ln( C ) = -(D / L2 ) t
– C = exp -(D / L2 ) t  = exp –t/τ  (τ relaxation time)

• Small L gives small relaxation time and rapid 
decay of fluctuations

L/2π
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Example of Fick’s 2nd law

Semi-infinite solid in which surface concentration is fixed

Eg Carburisation and decarburisation processes

(Cx - C0)/(Cs- C0) = 1 – erf(x/2√Dt)

Cs

t

C0
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Interdiffusion
w
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Diffusion mechanisms
• Diffusion is the stepwise migration of atoms in the 

lattice
– Vacancy diffusion 

– Interstitial mechanism
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Diffusion mechanisms
• Indirect interstitial mechanism – interstitial moves into 

lattice site and displaces atom into interstitial site

• Extended interstitial mechanism (crowdion) 
mechanism
– Low activation energy
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Interdiffusion of Si in α-quartz

From http://www.ensiacet.fr/E-Materials/diffusion/limoge/limoge1.html
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Activation energies
All the diffusion processes have an associated 

activation barrier
Barrier is associated with 
local lattice distortion

Attempt frequency ν0

Successful attempts
ν = ν0 exp – (Gact/kT)

= ν0 (exp (Sact/k) )exp – (Hact/kT)

However D ∝ ν    Therefore D = D0 exp – (Hact/kT)

∆Eact

Initial 
state

final 
state

w
w

w
.jntuw

orld.com

w
w

w
.jntuw

orld.com



Diffusion vs temperature plots

High activation energy –
dominates at high T

Low activation energy –
dominates at low T

Log D

1/T

D = D0 exp – (Hact/kT)
Different diffusion processes have different activation 
energies and different pre-factors

Typical values Hact ~1-5 eV     D0 ~ 10-4 cm2s-1
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Grain Boundary Diffusion

Activation energies for diffusion often found to be much less 
than expected for bulk defect diffusion

Atomic disorder and lower density around grain boundaries 
gives rise to lower activation energies

Density of defects also higher close to grain boundaries

C

D

C

D

Cgb

Dgb

Grain 
boundarysurface

Cgb > C

Dgb > D

Therefore grain boundary 
diffusion dominates at 
low temperatures
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Examples of Diffusion
• Inter-diffusion of alloys

• Grain boundary diffusing in sintering

• Creep

• Changes of Phase

• Fast ion conduction (solid state batteries)
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Li ion Batteries
• Driving force for better (smaller, lighter, cheaper, 

better recyclability) batteries is considerable.

• Li is good potential material because of strong 
reducing properties (loses electrons easily)

• Early Li batteries used Li metal but these were 
withdrawn due to safety considerations

• Modern methods use intercalation – Li ions are 
repeatedly inserted into available sites in the host 
structure framework
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Thermal properties

Heat Capacity
Thermal conductivity
Thermal expansion

Why study thermal properties
Need to know how much a material will expand/contract 

on heating/cooling
Need to know how fast energy will be transported 

through a material from a heat source
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Heat capacity

Definition:

The amount of heat required to raise the temperature 
of a mole of a material by a unit of temperature.

C = dQ/dT
Units           J mol-1 K-1

Specific heat capacity
heat capacity per unit mass  (J kg-1 K-1)
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Dulong and Petit Law

The specific heats of many materials at room 
temperature are the same

Equipartition of energy

Energy per mole = 3 k T NA

NA  is Avogadro’s number

Cv = δE/δT = 3 k NA /mole = 24.94 J mol-1 K-1

Cu  : CV = 24.6 J mol-1 K-1

Pb : CV = 26.5 J mol-1 K-1

Al   : CV = 24.3 J mol-1 K-1

Au  : CV = 25.6 J mol-1 K-1
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Low temperature specific heat

Cv Cv

T3 T3Silicon

Cv ∝ T3

Copper

Departs from Cv ∝ T3 at 
very low T

At low temperatures the phonon contribution becomes important

Bose-Einstein statistics

Debye theory: Cv =12/5 π4Nk (T/TD)3

Metals – electronic contribution Fermi – Dirac statistics 

Einstein Debye: Celectrons = π2NAk2T/2EF
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Specific Heat Capacity
Typical values (J kg-1 K-1)

Metals                                       ~ 300 – 900
Ceramics                                   ~ 700 – 900

Polymers                                   ~ 1000 - 2000
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Thermal Expansion 
Definition:

The fraction change in length/volume per unit 
temperature rise

Length αL = ∆l/l0/∆Τ

Volume  αv = ∆V/V0/∆Τ
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Origin of expansion

Thermal expansion caused by increase in average distance 
between atoms

Increase arises from anharmonicity of interatomic potentials

T1
T2

energy

r1 r2

separation
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Thermal expansion

Typical values (x 10-6 K-1)

Metals                                    ~ 5-25
Special alloys (FeNi, invar)        < 1 
Ceramics                          ~ 0.5 – 15
Polymers                         ~ 50 – 300
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Invar Effect
• Guillaume (1897) noted that Fe Ni(35%) exhibits anomalously 

low thermal expansion over a wide range of temperatures

• Other properties (heat capacity, modulus and magnetisation) 
also show anomalous behaviour

• Effect related to magnetism but full understanding is still lacking

• Change in magnetic alignment with volume – anomalous 
volume dependence of binding energy

• Applications
– Electronic devices – Cathode ray tubes
– Aircraft controls
– Bimetal strips in household appliances
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Negative expansion materials
• Certain complex ceramics were found 

to have a negative coefficient of 
expansion

• Example – ZrW2O8 – Negative 
coefficient from 0 – 1050 K

• Origin of effect 
– Structure composed of linked (nearly) 

rigid octahedral and tetrahedra
– Rotation of these units causes 

shrinkage
– Increasing temperature increases 

rotation 

From 
http://www.esc.cam.ac.uk
/astaff/dove/zrw2o8.html

w
w

w
.jntuw

orld.com

w
w

w
.jntuw

orld.com



Zero-expansion Materials
• Recent Nature paper (Salvador et al.Nature, 425, 702 

(2003)) reported an alloy (YbGaGe) with zero thermal 
expansion coefficient

• Unlike negative expansion materials this alloy is 
conducting

• Origin of effect is electronic (not magnetic)
– With increasing temperature electrons move from Yb to 

Ga
– Yb shrinks but Ga remains unchanged
– Counteracts normal thermal expansion
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Thermal conductivity
Definition

Thermal conduction is the phenomenon whereby heat is 
transported from regions of high temperature to 

regions of low temperature

q = -κ dT/dx   (cf Fick’s law for diffusion)

κ is the thermal conductivity  - units W m-1 K-1

q is the heat flux per unit area per unit time (W m-2)
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Mechanisms of heat transport

Phonons – dominates in insulators

κ= 1/3 Cv v λ (cf diffusion)

v is phonon velocity

λ is phonon mean free path

-Limited by 

Other phonons

Impurities

Defects – vacancies, dislocations

Grain boundaries
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Mechanisms of heat transport

Free electrons – dominates in metals

κ = 1/3 Cv v λ

Wiedemann-Franz law
At a given temperature the Thermal conductivity of a 

metal is proportional to the electrical conductivity

κ/σ = LT 

Thermal conductivity increases with T – increased velocity

Electrical conductivity decreases with T – increased scattering

L (Lorentz number) should be independent of T and same for all metals

(2.44 x 10-8 ΩWK-2) if heat energy entirely transported by free electrons
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Typical values of κ (W m-1 K-1)

Metals                                         ~   100 - 400
Ceramics                                     ~   1 – 40
Polymers   (good insulators)       ~ 0.1 – 0.2
Diamond                                     ~    2000 

Conductivity can be reduced by making porous materials

-Styrofoam cups (foamed polystyrene)

-Porous ceramics

-Foamed metals
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Thermal stress
• Stresses induced by temperature changes

– eg brass rod heated but prevented from lengthening
– Compressive stress σ=Eα(T-T0)

• Thermal stresses may cause fracture in brittle 
materials (ceramics) 
– Surface cools rapidly and tries to contract
– Interior cools more slowly
– Residual stresses

• Fracture most likely to occur during cooling
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Thermal Shock Resistance
Strength x Thermal Conductivity

Young's Modulus x Thermal Expansion
Figure of Merit
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Thermal Shock Resistance
• Spark plugs

• Engine components

• High voltage insulators

• Crucibles

• Furnace linings

• Cookware

• Cookers / hobs
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Applications
• Heat sinks

– Electronic components – size of electronic devices often 
limited by rate at which energy can be removed from unit

• Insulators
– Homes
– Refrigeration

• Thermal barriers
– Plasma spayed coating of ZrO2 8%Y2O3 on aero-engine 

components (low thermal conductivity, good thermal shock 
resistance)

– Space shuttle solid rocket components (Carbon fibre based 
material, ceramics reinforced with carbon nanotubes)
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Part 1 - Summary
• Revision of / Introduction to

– Crystal structure, bonding
• From these we can estimate fundamental crystal properties 

(modulus, ideal strength)
– Microstructure – dislocations, grain boundaries

• The microstructure varies with processing
• The microstructure influences all properties of real materials

• Diffusion
– The transport of atoms in materials
– Materials processing depends on moving atoms in materials

• Thermal properties
– How materials behave when subjected to high temperatures 

/ sudden temperature changes
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