
Cyclic codes: review
EE 387, Notes 15, Handout #26

◮ A cyclic code is a LBC such that every cyclic shift of a codeword is a
codeword.

◮ A cyclic code has generator polynomial g(x) that is a divisor of every
codeword.

◮ The generator polynomial is a divisor of xn − 1, where n is blocklength.

◮ The parity-check polynomial is h(x) =
xn − 1

g(x)
.

◮ Codewords can be generated by:

nonsystematic: m(x) → m(x)g(x)

systematic: m(x) → xn−km(x)−Rg(x)

(

xn−km(x)
)

◮ Codewords can be characterized by (and errors detected by):

c(x) mod g(x) = 0

c(x)h(x) = 0 mod (xn − 1)
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Examples of binary cyclic codes

Example: Over GF(2) the cyclic polynomial of degree 6 can be factored as

x6 − 1 = (x3 ± 1)2 = (x+ 1)2(x2 + x+ 1)2 .

The binary cyclic codes of blocklength 6 have generator polynomials

(x+ 1)i(x2 + x+ 1)j , 0 ≤ i ≤ 2 , 0 ≤ j ≤ 2

None of these 9 cyclic codes is interesting—poor minimum distance.

Example: Over GF(2), x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

There are 23 = 8 divisors x7 − 1 and thus 8 cyclic codes of blocklength 7.

Primitive polynomial yields cyclic Hamming code; e.g., g(x) = x3 + x+ 1 .

G =









1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1









=⇒ H =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1





The “dual” code has generator matrix H, the (7, 3) maximum-length code.
All nonzero codewords have the same weight, 2m−1 = 4.
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Cyclic codes of blocklength 15

Over GF(2) the cyclic polynomial x15 − 1 has five distinct prime factors:

x15 − 1 = (x+ 1)(x2 + x+ 1) ·

(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)

There are 25 cyclic codes. Some of the more useful generator polynomials:

(x4 + x+ 1) (15,11) binary cyclic Hamming

(x4 + x+ 1)(x4 + x3 + x2 + x+ 1) (15,7) 2-error-correcting BCH

(x4 + x+ 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1) (15,5) 3EC BCH

(x4 + x+ 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1)(x+ 1) (15,4) maximum-length

These codes, with d∗ = 3, 5, 7, 8 , are obtained by expurgation.

Weight
distributions of
blocklength 15
cyclic codes

1 0 0 35 105 168 280 435 435 280 168 105 35 0 0 1
1 0 0 0 0 18 30 15 15 30 18 0 0 0 0 1
1 0 0 0 0 0 0 15 15 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0
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Equivalent codes

The cyclic (7, 4) Hamming code is different from earlier (7, 4) Hamming
code; check bits are in positions 1, 2, 3 instead of 1, 2, 4.

Hold =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



 6= Hcyclic =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1





Definition: Two block codes that are the same except for a permutation of
the symbol positions are called equivalent.

◮ Equivalent codes have same weight distribution and minimum weight.

◮ Not every linear block code is systematic. Consider this generator matrix:

G =

[

1 1 0 0
0 0 1 1

]

◮ Every linear block code is equivalent to a linear block code that has a
systematic generator matrix G = [P | I ] (or G = [ I | P ]).
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Parity-check polynomial

The parity-check polynomial of cyclic code with generator polynomial g(x)
is

h(x) =
xn − 1

g(x)
.

The degree of the parity-check polynomial is n− (n− k) = k.
Parity-check polynomial defines a relation satisfied by all codewords:

c(x)h(x) = m(x)g(x)h(x) = m(x)(xn − 1)

= xnm(x) − m(x) = 0 mod (xn − 1)

= (0, . . . , 0,m0, . . . ,mk−1)− (m0, . . . ,mk−1, 0, . . . , 0)

Therefore coefficients of xi in c(x)h(x) are 0 for i = k, . . . , n− 1.
This corresponds to n− k check equations:

xk =⇒ 0 = c0hk + c1hk−1 + · · · + ck−1h1 + ckh0
xk+1 =⇒ 0 = c1hk + c2hk−1 + · · · + ckh1 + ck+1h0
...

...
xn−1 =⇒ 0 = cn−k−1hk + cn−khk−1 + · · · + cn−2h1 + cn−1h0

EE 387, October 28, 2015 Notes 15, Page 5



Parity-check matrix: nonsystematic

The n− k check equations obtained from c(x)h(x) = 0 mod (xn−1)
correspond to a nonsystematic parity-check matrix:

c0 c1 · · · ck−1 ck ck+1 ck+2 · · · cn−1

H1 =



















hk hk−1 · · · h1 h0 0 0 · · · 0

0 hk hk−1 · · · h1 h0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 hk hk−1 · · · h1 h0 0

0 · · · 0 0 hk hk−1 · · · h1 h0



















=



















hR(x)

xhR(x)
...

xn−k−2hR(x)

xn−k−1hR(x)



















This matrix has the same form as the nonsystematic generator matrix.

The rows of H1 are shifts of the reverse of h(x).

hR(x) = hk + hk−1x+ · · · + h1x
k−1 + h0x

k .

Since h(x) is also a divisor of xn − 1, it generates an (n, n− k) cyclic code.
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Parity-check matrix: nonsystematic (cont.)

Since hR(x) = xkh(x−1), zeroes of hR(x) are reciprocals of zeroes of h(x).
Thus hR(x) is also called the reciprocal polynomial.

The equation

gR(x)hR(x) = (g(x)h(x))R

= (xn − 1)R = 1− xn = −(xn − 1)

shows that hR(x) is a divisor of xn − 1.

Parity-check matrix H1 has the form of a nonsystematic generator matrix.

Rows of H1 are shifts of the reversal polynomial hR(x). Thus h−1
0 hR(x)

generates a cyclic code.

The cyclic code generated by h(x) consists of the reversals of the dual of
the cyclic code generated by g(x).
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Syndrome circuit #1

Syndrome computation circuit corresponding to H1 multiplies by the fixed
polynomial h(x).

h0h1h2h3h4

r(x)

r(x)h(x)

This circuit convolves input sequence r0, r1, . . . , rn−1 with parity-check
polynomial coefficient sequence h0, h1, . . . , hk.

Since deg r(x) ≤ n− 1, the product r(x)h(x) has degree ≤ n− 1 + k.

Only n− k of the n+ k coefficients of r(x)h(x) are used as the syndrome.

The syndrome consists of the coefficients of xk, . . . , xn−1 in r(x)h(x).

These are generated after rn−1, . . . , rn−k have been shifted into the register.
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Syndrome polynomial

We can obtain the systematic parity-check matrix from the systematic
generator matrix using the general approach:

G = [P | I ] =⇒ H = [ I | −P T ]

Direct construction: define syndrome polynomial to be the remainder of
division by generator polynomial:

s(x) = r(x) mod g(x) = s0 + s1x+ · · ·+ sn−k−1x
n−k−1

Every codeword is a multiple of g(x), so codewords have syndrome 0. Thus

s(x) = r(x) mod g(x) = (c(x) + e(x)) mod g(x)

= c(x) mod g(x) + e(x) mod g(x) = e(x) mod g(x)

The remainder function is linear in the dividend r(x).

Therefore remainders of all n-tuples are linear combinations of

xi mod g(x) (i = 0, 1, . . . , n− 1)
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Parity-check matrix: systematic

Polynomial syndrome s(x) corresponds to systematic parity-check matrix:

H2 =

























1
x
...

xn−k−1

xn−k mod g(x)
...

xn−1 mod g(x)

























T

=





















1 0 · · · 0 s
[n−k]
0 · · · s

[n−2]
0 s

[n−1]
0

0 1 · · · 0 s
[n−k]
1 · · · s

[n−2]
1 s

[n−1]
1

...
...

. . .
...

...
. . .

...
...

0 0 · · · 1 s
[n−k]
n−k−1 · · · s

[n−2]
n−k−1 s

[n−1]
n−k−1





















Column i of H2 is syndrome of xi, consists of coefficients of xi mod g(x).

Special case: column n− k consists of coefficients of −g(x) except xn−k.

Column i is obtained from column i− 1 by a linear feedback shift.
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Syndrome circuit #2

Syndromes corresponding to H2 can be calculated very efficiently using
linear feedback shift register circuits that implement polynomial division.

g0 g1 g2 g3

r(x)

−1

r(x) mod g(x)

r(x) div g(x)

Encoding circuits can also be used for syndrome computation:

syndrome = actual check symbols− expected check symbols

where expected check symbols are computed from received message
symbols using the above encoder.
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Partial syndromes

The zeroes of the generator polynomial determine codewords:

c(x) is codeword ⇐⇒ c(β) = 0 for every zero β of g(x).

(The “if” holds when g(x) has no repeated zeroes, i.e., repeated factors.)

The zeroes of g(x) belong to extension field GF(qm) of GF(q).

Let {β1, . . . , βt} include at least one zero of each prime factor of g(x) .

The partial syndromes S1, . . . , St of r(x) are defined to be

Si = r(βi) = r0 + r1βi + · · · + rn−1β
n−1
i (i = 1, . . . , t)

The partial syndromes belong to the same extension field as β1, . . . , βt.

Syndrome component Si corresponds to m linear equations over GF(q).

The equations are linearly dependent if βi is in a proper subfield of GF(qm).
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Example: cyclic Hamming code

Let p(x) be a primitive polynomial over GF(2) of degree m.

The smallest value of n such that p(x) | (xn − 1) is n = 2m − 1.

Cyclic code generated by p(x) has blocklength n = 2m − 1.

The parity-check matrix H whose columns are xi mod p(x) has distinct
nonzero columns, so the code can correct all single errors.

The columns of H are powers of α = x in GF(2m):

H =
[

1 α α2 · · · αn−2 αn−1
]

Assume a single error in location i, i.e., e(x) = xi. Partial syndrome for α:

S1 = r(α) = r0 + r1α+ · · · + rn−1α
n−1

= c(α) + e(α) = e(α) = αi .

Decoder must find error location i from syndrome S1 = αi, i.e., decoder
must compute a discrete logarithm base α.
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Nonbinary Hamming codes

Every 1EC code has d∗ ≥ 3, hence any two columns of check matrix are LI,
hence no column of H is a multiple of another column.

There are qm − 1 m-tuples over GF(q). The largest number of pairwise LI
columns is

qm − 1

q − 1
= qm−1 + qm−2 + · · ·+ q + 1 .

since we can use only one of the q − 1 nonzero multiples of any m-tuple.

We normalize columns by requiring first nonzero entry to be 1. Example:

H =





1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 2 2 2 1 1 1 0
0 1 2 0 1 2 0 1 2 0 1 2 1



 .

Decoding procedure for this (13, 10) code:

1. Compute syndrome s = rHT .

2. Normalize syndrome by dividing by first nonzero entry si.

3. Equal column of H is error location, and si is error magnitude.
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Cyclic nonbinary Hamming codes

A cyclic nonbinary Hamming code is defined by an element β of GF(qm) of
order n = (qm − 1)/(q − 1). The check matrix is

H =
[

1 β β2 · · · βn−1
]

,

and g(x) is the minimal polynomial over GF(q) of β. (Fact: deg g(x) = m)

Columns of H are LI over GF(q) if and only if βj/βi = βl is not in GF(q).

Fact: There exists a cyclic Hamming code of blocklength n if and only if n
and q − 1 are coprime, which is true if and only if m and q − 1 are coprime.

Example: If q = 3 then q − 1 = 2, so odd values of m are required.

Let GF(33) be defined by primitive polynomial x3 + 2x+ 1, and β = α2.

H =
[

1 α2 . . . α22 α24
]

=





1 0 0 1 2 0 2 0 1 1 1 2 1
0 0 2 1 0 1 0 2 2 2 1 2 2
0 1 1 1 2 1 1 0 0 1 2 0 2



 .

The generator polynomial x3 + x2 + x+ 2 can be found by several
methods, then used to construct a systematic parity-check matrix.
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Cyclic binary Golay code

Multiplicative orders of elements of GF(211) divide 211 − 1 = 23 · 89.

There are φ(23) = 22 elements of order 23. Conjugates of any such β are

β, β2, β4, β8, β16, β9, β18, β13, β3, β6, β12

The minimal polynomial has degree 11. Prime polynomials of degree 11 are

g(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1

g̃(x) = x11 + x9 + x7 + x6 + x5 + x+ 1

These polynomials are mirror images; their zeroes are reciprocals.

Consecutive powers β, β2, β3, β4 among the conjugates guarantee d∗ ≥ 5.

Lemma: Golay codewords of even weight have weight a multiple of 4.

Theorem: The cyclic Golay codes has d∗ = 7 and in fact are perfect codes.

Weight enumerator: 1 + 253x7 + 506x8 + 1288x11 + 1288x12 + 506x15 + 253x16 + x23
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Examples of cyclic codes: CRC-16

Cyclic codes are often used for error detection because the encoding and
syndrome calculation circuits are very simple.

The most common generator polynomial is CRC-16:

CRC-16 = x16 + x15 + x2 + 1 = (x+ 1)(x15 + x+ 1)

CRC-16 is simplest polynomial of degree 16 with degree 15 primitive factor.
The factor x15 + x+ 1 is primitive of degree 15 hence has order 215 − 1 .

Therefore the design blocklength of CRC-16 is 215 − 1 = 32767 bits.

A significantly shortened code is almost always used.
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Examples of cyclic codes: CRC-CCITT

Another popular generator polynomial is

< CRC-CCITT = x16 + x12 + x5 + 1 = (x+ 1)p2(x) ,

where p2(x) is a primitive polynomial of degree 15:

p2(x) = x15 + x14 + x13 + x12 + x4 + x3 + x2 + x+ 1

CRC-16 and CRC-CCITTT polynomials have only 4 nonzero coefficients, so
the shift register coding circuits need only 3 exclusive-or gates.

Minimum distance for CRC-16, CRC-CCITT is 4. Both codes correct single
errors while detecting double errors, or detect up to 3 errors.

Any cyclic code with n− k = 16 detects burst errors of length 16 bits, which is optimal.
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