
Chapter 3

Linear Block Codes

3.1 (n, k) Linear Block Codes over GF(q)

� Let the message )( 1-k10 m,,m,mm L= be an arbitrary k-tuple

from GF(q).

The linear (n, k) code over GF(q) is the set of kq codeword of

row-vector form )( 1-n10 c,,c,cc L= , where )GF(qc j ∈

� By linear transformation
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Here G is a nk × matrix of rank k of elements from GF(q),

ig is the i-th row vector of G.

G is called a generator matrix of the code.

� The rows of G are linearly independent since G is assumed to

have rank k.

� The code C is called a k-dimensional subspace of the set of all

n-tuples.



Example:

(7, 4) Hamming code over GF(2)

The encoding equation for this code is given by
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� An (n, k) block code is said to be linear if the vector sum of two

codeword is a codeword.

� Linear Systematic Block Code:

In systematic from the codeword C is comprised of an

information segment and a set of n-k symbols that are linear

combinations of certain information symbols, determined by the

P matrix. That is
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message codeword
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The second set of equations, given above, is called the set of

parity-check equations.

� An (n, k) linear systematic code is completely specified by a nk ×

generator matrix of the following form
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where kI is the kk × identity matrix
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P -matrix is a )( k-nk × matrix.



� Parity-check matrix

An (n, k) linear code can also be specified by an kk-n ×)(

matrix H.

Let )( 1-n10 c,,c,cc L= be an n-tuple

then c is a codeword if and only if
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i.e. the inner product of c and each row of H is zero.

The matrix H is called a parity-check matrix.

Since [ ]PIG k=

we can see that [ ]k-n
T IPH =

where TP is the transpose of P

and 0HG T =⋅ .

Note: For any given generator matrix G, many solution for H are

possible.



Example:

A (6, 3) code is generated by
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The parity-check matrix is given by
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A code generated by H is called the dual code of the code

generated by G.

A dual code is denoted as ⊥C .



3.2 Hamming Distance of Linear Block Code and

Error Protection Properties

� Distance between two n-symbol vectors

)( 1-n10 u,,u,uu L=

)( 1-n10 v,,v,vv L=

(a) Euclidean distance
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(b) Hamming distance
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i.e. the number of places where u and v differ.

� Hamming weight and Hamming distance of codewords

(a) For a linear code C, the Hamming distance between any two

codewords is simply described by
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where 3c is the difference between 1c and 2c .

)( 3cwt is the Hamming weights of 3c , or the number of

nonzero positions of 3c .



(b) Triangle inequality

For codeword a , b and c
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3.3 Minimum distance of a Block code

Let C be a linear block code. The minimum distance of C,

denoted as mind , is defined as follows:

}:)({ uvC,u,vu,vdmindmin ≠∈≡

The minimum weight of C, denoted as minw , is defined as

follows:
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Exercise:

Show that minmin wd =

Proof:
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3.4 maximum Error-Correction Capability of a Block

Code

� Suppose that 0c is selected for transmission and that the closest

codeword is mind in Hamming distance, as shown below (Fig. 3.5

page 87)
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)( 1-n10 e,,e,ee L= : error pattern.

)( 1-n10 c,,c,cc L= : codeword transmitted.

)( 1-n10 r,,r,rr L= : received word.



If the channel-error pattern e has 
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or fewer errors,

one is guaranteed that ecr 0 += remains closer in Hamming

distance to 0c than to any other codeword and thus is decoded

correctly.

As a consequence, 
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is called the maximum

error-correction capability of the code.

� Error-detection Capability

Suppose that the decoder’s task is only to detect the presence of

errors, and if errors are detected, to label the codeword (received

word) is unreliable.

The detector’s function can fail only if e takes the transmitted

codeword 0c into another codeword 1c , that is 10 cec =+ .

This cannot occur if there are 1dmin − or fewer errors in the n

positions of the code.

That is, 1dmin − is the guaranteed error detection capability of

the code.



� Hybrid modes of error control

One can correct t errors and still detect up to dt errors provided

that mind dtt <+ .

3.5 Weight Distribution

Let C be an (n, k) linear block code and minw denotes the

number of codewords in C with Hamming weight i .

Define ∑
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i zwzW )( as the weight enumerator polynomial.
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Exercise:

Find the weight enumerator polynomial of the (7, 4) Hamming

code generated by
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3.6 Some Commonly-used Modifications of Linear

Codes

� Shortened code

A code is shortened by deleting some message symbols (bits) from

the encoding process.

For example, by deleting one message symbol (or bit), an (n, k)

code becomes an (n-1, k-1) code.

Extended code

A code is extended by adding some additional redundant symbols

(or bits).

For example, by adding one parity symbol, a (n, k) code becomes

a (n+1, k) code.

In general, the error-control capability of the extended code can

be increased.



� Punctured Code

A code is punctured by deleting some of its parity symbols (or

bits).

For example, by deleting one parity symbol, a (n, k) code

becomes (n-1, k) code.

In general, the error-control capability is reduced, but the code

rate is increased.


