Chapter 3
Linear Block Codes

3.1 (n, k) Linear Block Codesover GF(Q)
= Let the message Mm=(m,,m,,---,m, ;) be an arbitrary k-tuple
from GF(Qq).

The linear (n, k) code over GF(q) is the set of q“ codeword of

row-vector form C€=(c,,C;,*-,C,,), where ¢; € GF(Q)

» By linear transformation

~
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c=m-G= m, - g; =myg, + Mgy +---+ M, G, 4
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Here G is a kxn matrix of rank k of elements from GF(q),
0; isthei-th row vector of G.

Giscalled agenerator matrix of the code.

» The rows of G are linearly independent since G is assumed to
have rank k.
» The code C is called a k-dimensional subspace of the set of all

n-tuples.



Example:

(7, 4) Hamming code over GF(2)

The encoding equation for this codeis given by
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4= 0+m1+m2
5 = 1+m2+m3
6 — 0+m1+m3
that is,
10 0 0 1 0 1
G_o 100111
"lo 010110
00010 1 1]

* An (n, k) block code is said to be linear if the vector sum of two

codeword isa codeword.

» Linear Systematic Block Code:
In systematic from the codeword C is comprised of an
information segment and a set of n-k symbols that are linear
combinations of certain information symbols, determined by the

P matrix. That is



c,=m;; for 0<i<k

k-
G zzmj Pink-i;for k<i<n
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message codeword
(Mg, My, my ;) <> (My,my,--,mM, 4, €, ,Crqy,Cpy)
The second set of equations, given above, is called the set of

parity-check equations.

= An (n, k) linear systematic code is completely specified by a kxn

generator matrix of the following form

G=| 7 |=[1.P]

where |, isthe kxk identity matrix

Po, (n-k-1) Po,in-k2y Poo
Py, (n-k-1) Piink2y 0 Pro
P= X X ) ;
| Pk-yy.(nk-y Peny.inkzy 0 Penyo |

P -matrixisa kx(n-Kk) matrix.



» Parity-check matrix
An (n, k) linear code can also be specified by an (n-k)xk
matrix H.
Let C=(c,,c;,:--,C,;) bean n-tuple
then C isacodeword if and only if
c-H' =(0,0,--,0)
Tk
i.e. theinner product of C and each row of H is zero.
Thematrix H iscalled a parity-check matrix.
Since G=[I,P]
wecan seethat H =[P"I_]|

where P isthetransposeof P

and G-HT =0.

Note: For any given generator matrix G, many solution for H are

possible.



Example:

A (6, 3) codeis generated by

100111
G=0 1 0101
001011

The parity-check matrix is given by

110100
H=10 1010
111001

A code generated by H is called the dual code of the code
generated by G.

A dual codeisdenoted as C*.



3.2 Hamming Distance of Linear Block Code and

Error Protection Properties
» Distance between two n-symbol vectors

U=(Up,Up,,Unyg)

<l

=(V01V1""1Vn-1)

(&) Euclidean distance

de (T, 7) = 3 (u -v)?

(b) Hamming distance
d, (@, V)=fi|u #v;, i=01:--,n-1}

I.e. the number of placeswhere U and V differ.

» Hamming weight and Hamming distance of codewor ds
(&) For alinear code C, the Hamming distance between any two
codewordsissimply described by
d, (C,,C,) =wt(T, -C,) = wt(C,)
where C; isthedifferencebetween C, and C,.
wt(C;) is the Hamming weights of C,, or the number of

nonzero positionsof Cj;.



(b) Triangleinequality

For codeword @, b and C

d,(a,c)+d,(c,b)>d, (a,b)
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(¢) d,(a,b)=wt(a+b)
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3.3 Minimum distance of a Block code
Let C be a linear block code. The minimum distance of C,
denoted as d,;., isdefined asfollows:
d..=min{d(v,u):v,ueC, V#U}
The minimum weight of C, denoted as W,;,, is defined as

follows:

w_. =min{w(V):Ve C, V=0}

Exercise:
Show that d., =W,

Pr oof:

d..=min{d(v,u):Vv,ueC, V+U}
=min{d(V+U):V,ueC, V-u}
=min{w(X): Xe C, X 20}
=Wmin



3.4 maximum Error-Correction Capability of a Block

Code

= Supposethat C, issdected for transmission and that the closest
codeword is d,;, in Hamming distance, as shown below (Fig. 3.5

page 87)
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e=(e,,6e,,--,€,): error pattern.

ol

=(¢,,C;++,C,.1): codeword transmitted.

=l

=(ry,r,--+,r. 1) received word.



dmin -1
If the channd-error pattern € has t=L—Jor fewer errors,

2
one is guaranteed that ' =C,+€ remains closer in Hamming
distanceto C, than to any other codeword and thus is decoded

correctly.

dmin_l . .
As a consequence, t:LTJ is called the maximum

error-correction capability of the code.

Error-detection Capability

Suppose that the decoder’s task is only to detect the presence of
errors, and if errors are detected, to label the codeword (received
word) isunreliable.

The detector’s function can fail only if € takes the transmitted
codeword C, intoanother codeword C,,thatis C,+€=C,.
This cannot occur if thereare d,,—1 or fewer errorsin the n
positions of the code.

That is, d,;,—1 isthe guaranteed error detection capability of

the code.



» Hybrid modesof error control
Onecan correct t errorsand still detect upto ty; errorsprovided

that t+t, <d_. .

3.5 Weight Distribution

Let C be an (n, k) linear block code and W,;,, denotes the

number of codewordsin C with Hamming weight i .

Define W(2) =) W.Z astheweight enumerator polynomial.
i=0

Clearly, w, =1

W, +W, +-o+ W, = 2"

Exercise:
Find the weight enumerator polynomial of the (7, 4 Hamming

code generated by
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Answer: W(2)=1+72°+72'+7



3.6 Some Commonly-used M odifications of Linear
Codes

= Shortened code
A codeis shortened by deleting some message symbols (bits) from
the encoding process.
For example, by deleting one message symbol (or bit), an (n, k)

code becomes an (n-1, k-1) code.

Extended code
A code is extended by adding some additional redundant symbols
(or bits).
For example, by adding one parity symbol, a (n, k) code becomes
a (n+1, k) code.
In general, the error-control capability of the extended code can

beincreased.



* Punctured Code
A code is punctured by deleting some of its parity symbols (or
bits).
For example, by deleting one parity symbol, a (n, k) code
becomes (n-1, k) code.
In general, the error-control capability is reduced, but the code

rateisincreased.



